military handbook titanium and titanium alloys

military handbook titanium and titanium alloys

122 Pages · 1999 · 5.58 MB · English

T = tubing, C = casting . There are wveral unalloywl titanium gradas available . High purity grades of these alloys at-aavailable and are designated with the suffix ELl, meaning. Extra Lo”w I nteratitials . @o&. - The largest titanium ingot produced to date was about 40 inches in diameter and.

military handbook titanium and titanium alloys free download

MILHDBK+597A 1JUNE1974 SUPERSEDING“ MILHDBK+97(MR) 1JUNE1974 MILITARYHANDBOOK TITANIUMANDTITANIUMALLOYS IDownloaded from http://wwweveryspeccom DEPARTMENTOFDEFENSE WASHINGTON,0C ~ I MlLHDBK697A TitaniumandTitaniumAlloys 1June1974 1ThisstandardizationhandbookwasdevelopedfortheDepanmentofDefenseinaccordarrce withestablishedprockdure 2ThispublicationwasapprovedonlJune1974forprintingandinclusioninthemilitary standardizationhandbooksaries 3Thishandbookprovidesbasicandfundamentalinformationontitaniumandtitanium alloysfortheguidanceofengineersanddesignersofmilita~materielThishandbookisnotih tendedtobereferenc%inpurchaXspmificationsexceptforinformationalpurposes,norshallit supersedeanyspecificationrequirements 4Everyeffomhasbmnmadetoreflectthelat=tinformationontitaniumandtitanium alloysltistheintenttor&iewthisdocumentperiod)callytoinsureitscompletenessandcurrency Usersofthisdocumentareencouragedtoreportanyerrorsdiscoveredandrecommendationsfor changasorinclusionstotheDirector,USArmyMaterialsandMechanicsResearchCenter, Watertown,Massachusetts02172,ATTN:AMXMRMS iiDownloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 PREFACE Thisisoneofagroupofhandbookscoveringmetallicandnonmetallicmaterialsusedinthe designandconstructionofmilitaryequipment Thepurposeofthishandbookistoprovide,incondensedform,technicalinformationand dataofdirectusefulnesstodesignengineersThedata,especiallyselectedfromanumberofgov ernmentandindustrialpublications,havebeencheckedforsuitabilityforuseindesignWherever practicable,thevarioustypes,classes,andgradesofmaterialsareidentifiedwithapplicablegovern mentspecificationsThecorrespondingtechnicalsocietyspecificationsandcommercialdesigna tionsareshownforinformation Thenumericalvaluesforpropertieslistedinthishandbook,whichduplicatespecification requirements,areinagreementwiththevaluesinissuesofthespecificationsineffectatthedateof thishandbookBecauseofrevisionsoramendmentstospecificationstakingplaceafterpublication, thevaluesmay,insomeinstances,differfromthoseshownincurrentspecificationsInconnection withprocurement,itshouldbeunderstoodthatthegoverningrequirementsarethoseofthespeci ficationsof~heissuelistedinthecontract ThisrevisionofthehandbookwaspreparedbytheMetalsandCeramicsInformationCenter ofBattelleColumbusLaboratoriesandtheArmyMaterialsandMechanicsResearchCenterCorn mentsonthishandbookareinvitedTheyshouldbeaddressedtoDirector,USArmyMaterialsand MechanicsResearchCenter,Watertown,Massachusetts02172,ATTN:AMXMRMS !11Downloaded from http://wwweveryspeccom CONTENTS MILHDBK697A 1JUNE1974 ParagraphPage Preface SactionlGENERALINFORMATION TITANIUMINENGINEERINGDESIGN IGeneralCharacteristics 2TitaniumAlloyAvailabilityDesignations 3AvailabilityofTitaniumFormsandSizeS RutileOreChlorination MagnesiumReductionofTlC14TitaniumSPon9e TitaniumSpongePurification’ TitaniumMelting Ingot Castings Forgings,Billets Bar,RodandWire Plate,Sheet,StripandFoil ExtrudedShapes Tubing PowderMetallurgyProducts SectionIlSPECIFICATIONSANDPROPERTIES TITANIUMMATERIALSSPECIFICATIONS 4General 5MilitarySpecifications 6AMSSpecifications 7ASTMSpecifications 8SpecificationandDesignationCorrelation 9GeneralSpecificationRequirements 10PropertiesSpecificationRequirements NONSPECIFICATIONMECHANICALPROPERTIES 11General 12TensionandCompressionPropeniasTemperatureEffects 13TypicalCreepandStras*Rupture6ehavior 14StabilityCharacteristics 15ToughnessParameter 16FatigueCharacteristics 17ComparisonofPropeniesofVariousProducts SectionillMETALLURGYANDPROCESSING METALLURGICALINFORMATION 1B 19TitaniumProductionVariables EffectsofAlloyingElements–MetallurgyandMicrostructure aGeneral bAlphaAlloys ‘,/ 111 1 1 1 3 6 6 6 6 : 9 10 11 11 11 13 13 14 14 14 14 21 21 24 27 29 z 29 36 38 ,39 43 46 50 50 50 51 51 52Downloaded from http://wwweveryspeccom MILHDBK697A IJUNE1974 ParagraphPage I cNearAlphaAlkWs,,,Y’ dAlphaBetaAlloys eBetaAlloys IfSynopsis 20EffectsofProcessingandHeatTreatmentVariables HEATTREATMENTPROCESSES 21HeatTreatmentRequirements 22Furnaces 23StressReliefAnnealingTreatments 24Anne:lmgTreatments 25SolutlonHeatTreatments 26AgingHeatTreatments 27SpecialPurposeHeatTreatments 28HeatTreatmentPrecautions FORMINGPROCESSES 29General 30MaterialPreparation 31Tooling 32Lubricants 33FormingMethods 34FormingProcassPrecautions MACHININGPROCESSES 35General 36MachiningRequirements 37Tooling 3BCoolants 39MetalRemovalTachniqu= aMilling bDrilling c,Tapping dsewing eTurningand80ring fAbrasiveCutting gChemicalMilling JOININGTECHNOLOGY 40 41 42General WeldingTechnology FusionWelding aBaseMetalCompositionandCondition: bCleaning” cJointOesign dFillerWire eInertGas fTooling gHeatInput52 33 53 54 54 60 60 61 62 62 62 67 67 69 70 70 72 72 73 73 73 74 74 76 77 77 77 77 7B 78 78 78 78 78 79 79 80 BO‘ 81 81 81 81 81 82 82 viDownloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 Paragraph 43 44 45 46 41 48 49 50 51hDistortion iDefects: jJointPerformance: ElectronBeamWelding” R~i~tan~eWelding, aSpotWelding bSeamWelding UpsetWeldingProcesses t2ualityAaauranceForWeldments DiffusionandDeformationBonding Brazing aFillerMetals” bFluxeaandAtmosp!seres cBrazingMethods Soldering AdhesiveBonding,, MechanicalFastening COATINGSANDSURFACETREATMENTS 52General 53ProtectiveCoatings 54CoatingsforPropertyimprovement aAlummum bNickel cChromium dMolybdenum eNitrogen fOxygen gCeramics hChemicalConversionCoatings iLubricants’ 55SurfaceTreatmentsOtherThanCoatings CORROSIONCHARACTERISTICS 56General 57ChemicalEnvironments 58StressCOrrOsiOn 59CreviceCorrosion 60GalvanicCorrosion SectionlVBIBLIOGRAPHYPage 82 B2 B2 83 83 84 84 84 B5 85 86 86 87 B7 88 8B 89 90 90 90 91 91 91 91 92 92 92 92 92 92 93 93 93 94 95 100 100 101 viiDownloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLES Table 1 Il Ill Iv v VI, V1l Vlll lx x xl X11 X111 X(V xv Xvi Xvl Xvll X1X xx Xxi Xxll Xxlll Xxiv xxv Xxvi Xxvl Xxvlll Xxix xxx Xxxl XxxllPhysicalPropertiesofTitaniumAndOtherPureMetals TitaniumAlloysofCurrentGeneralInterest TypicalDesignationsForTitaniumAlloysofCommercialInterest TypicalTitaniumProductForms AvailabilityofTitaniumAlloysinForgingsbyShapeandTolerances TypicalThicknessandFlatnessTolerancesofCurrentTitaniumPlate AvailabilityofTitaniumAlloySheetandStrip MilitarySpecificationsTitaniumandTitaniumAlloys,,,, MilitarySpecificationCorrelation CorrelationTable:MILT9047 CorrelationTable:MlLF83142 CorrelationTable:MILT9046 AerospaceMaterialsSpecificationsForTitaniumMaterials AMSMaterialsAndPioductFormCorrelation AmericanSocietyForTestingAndMaterialsSpecifications–TitaniumAnd TitaniumAlloys ASTMSpecificationCompositionAndDesignationCorrelations CompositionsAndDesignationsofMaterialsDescribedinAWSA51670, SpecificationForTitaniumandTitaniumAlloyBareWeldingRodsAnd Electrodes TypicalMinimumMechanicalPropertyRequirements–MlLT9047E Specification TypicalMinimumMechanicalPropertyRequirementsMlLT9046F Specification TypicalTensilePropertyRequirements–ASTMSpecifications TypicalTensileRequirementsAMSSpecifications TypicalTensilePropertyStabilityofSelectedAlloysAfterElevated TemperatureExposure ComparisonofPropertiesReportedForPopularAlloysFromWrought,Cast, AndPowderForms ComparisonofRoomTemperaturePropertiesReportedForSeveralForms ofTi115Mo6Zr—45SnAlloyAsSolutionTreatedPlusAged DensityAndStrength/DensityRatiosTypicallyAvailableInTitaniumAlloys StressReliefAnnealingSchedules AnnealingSchedules SolutionHeatTreatingSchedules MaximumtlsenchDelay,WroughtAlloys AgingHeatTreatmentSchedules RelativeFormabilityofAnnealedTitaniumAlloysfor$ixSheetForming OperationsatRoomAndElevatedTemperatures ApproximateThresholdsForStressCorrosionCrackingofTitaniumAlloys InHotSalt Page 2 4 5 8 10 12 12 15 16 17 19 20 22 23 24 25 26 28 30 32 33 40 47 48 2 64 66 66 68 71 VlllDownloaded from http://wwweveryspeccom I I I ! I ~ I I I I I FIGURES MILHDBK697A 1JUNE1974I Figure 1TitaniumProcessingFromOretolngot 2GeneralArrangementAndOperatiOnofMeltin9FurnaceAndCastin9Apparatus 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20UsedbyTitaniumCastingFoundries TypicalRangeInTensileYieldStrengthFoundForTi–6Al–4VAlloyDueTo VariationInChemistry,Structure,MillProductForm,HeatTreatment,And TestConditions~ EffectofTemperatureOnTheTypicalTensilePropertiesOfTitaniumMaterials TypicalVariationInElasticModulusValuesForSelectedTitaniumAlloysDueTo (a)TeatTemperature,And(b)HeatTreatmentConditionAndStrengthLevel TypicalCreepAndStressRuptureBehaviorForSelectedTitaniumAlloys EffectOfThermalExposureOnThePost–ExposureTensileDuctilityOfABeta TitaniumAlloyInTwoConditions Eff=tOfCreepExposureOnThePost–ExposureTensileDuctilityofaSuperAlpha TitaniumAlloyWithAndWithoutTheExposedAndOxidizedSurfaceLayer Removed EffectOfTemperatureOnTheCharpyV–NotchToughnessofUnalloyedTitanium (VariousGrades)AndThreeAlloysInTheAnnealedCondition FractureToughness–TensileYieldStrengthRelationshipObservedForAnnealed Ti8Al4VBars,Plates,AndForgings(WithinSpecificationLimitations) FractureToughnessTensileYieldStrengthTrendLinesForSelectedTitaniumAlloys InTheAnnealedAndHeatTreatedISTA)Conditions EffectOfSurfaceFinishOnTheRoomTemperatureRotatingBeamFatigue BehaviorOfTi–5Al25SnAlloy TypicalRoomTemperatureFatigueCharacteristicsOfSelectedTitaniumAIIOVS FlangesInFatigueBehaviorObservedForVariousFormsOfTi–6Al–4VAlloy CorrelationOfTitaniumAIIovClassWithSchematicEquilibriumMicrostructure, MajorPropertyTrendsandCompositions PartialPhaseDiagramofTheTi–6Al–VSystemAndTheSchematicRepresentation OfMicrostructureResultingFromTheFabricationOfTi6Al4VAIIovAtVarious Temperatures EffectOfAgingTimeAndTemperatureOnTheHardnessOfTi–6Al4VAIIov SolutionAnnealedat1562FAndWaterQuenched EffectOfColdStretchFormingOnTheCompressiveYieldStrengthsofVarious TitaniumAlloys CrackLengthIncreaseasaFunctionofFatigueCyclesinOuplexAnnealed Ti8AllMelVSheetinVariousEnvironments EffectofAluminumContentontheStrength,Toughness,andStressCorrosion SusceptibilityofTi–15Mo–O5V–BaseAIIOVS(Nominally1000PPMOxygen):Page 7 9 34 35 36 37 41 41 42 43 44 44 45 46 55 57 60 75 96 97 ixDownloaded from http://wwweveryspeccom SECTION] GENERALlNFORMATION MILHDBK697A 1JUNE1974 TitaniuminEngineeringDesign 1GeneralCharacteristicsTitaniumandtitaniumalloysareusedinengineeringdesign chieflyfortheirexcellentcombinationofmechanicalpropertiea,coupledwithlowdensityand theircorrosionresistanceOtheradvantagesoftitaniumforspectficapplicationsinclude:lowco efficientofthermalexpansion,goodoxidationresistanceatintermediatetemperatures,lowmagn eticpermeability,hightoughness,andlowheattreatingtemperatureduringhardeningAlloying maybeusedtoenhanceselectedpropertiesoftitaniumandmanyalloyscanbestrengthenedby processingandheattreatmentAlthoughabout40percentlighterthansteel,certaintitanium alloyscanbeequatedonastrengthtoweightbasistosteelshavingyieldstrengthlevelsofabOut 30CIksiComparedtoaluminum,titaniumalloys(60percentheavierthanaluminum)aremuch stronger,areusefultomuchhighertemperaturesandshowhigherfatigueresistanceandgreater hardnessAwiderangeofphysicalandmechanicalpropeniesareavailablefromtitaniumandits alloys TableIcomparessomeofthephysicalpropertiesoftitaniumwiththoseofotherpuremetals Aamentionedabove,alowdensity,intermediatetoaluminumandsteel,andalowcoefficientof thermalexpansionarepropertiesoftitaniumthatcanbeusedtoafforduniqueadvantagesforsome applicationsTheelasticmodulusoftitanium,alsointermediatetoaluminumandsteel,canbe usedtoadvantageincertainapplications(egtorsionbaraandsprings)Anotherphysicalcharac teristicoftitaniumisitstransformationfromonecrystalmorphology,bodycenteredcubic toanotherhexagonalclosepacked(hcp)atabout1625F(885C)Thetransformationisreversible Thehcpformisthestablestructureatroomtemperaturealthoughthebccformcanbestabilizedby alloyingTheprocessingandheattreatmentoftitaniumalloy:areinevitablyinvolvedwiththe transitionbehaviorandthetwobasicstructuresorphases,hcp(alpha)andbcc(beta) Thesecondaryprocessingoftitaniumoralloysthatmightberequiredbythefabricatorof enduseitemsusuallymaybeaccomplishedwithoutdifficultybytheexperiencedshopThereare ofcoursecertainprecautionstobeobservedwhichara“describedinmoredetailinlatersections Forexample,thepresem’ationofpropertiesimpartedbyprimaryprocessing(atthetitaniumpro ducersshop)mustbeaconsiderationduringanysecondaryfabrication,heattreatment,andfinish ingoperationsForming,joining(titaniumcanbewelded,orjoinedbyseveralothermethods),heat treatment,andmathiningoperationsmustfollowprocedureswhichallowforthephysicalcharac teristicscommontothemetal TitaniumisstrairvratesensitiveForexample,mechanicalpropertiesmayvarygreatlywith differentspeedsoftestingStrairvratesensitivityalsomustbegivenconsiderationinpartforming operationsForexamplesomecomplexpartscanbeformedatalowstrainratewhichwouldbe impossibletoformatahighstrainrateAstrainrateof0005in/in/minisgenerallyacceptedas standardfortensiletestin9 1Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 I uu 2Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 I I I I i Thehighfrictioncharacteristicsoftitaniumandassociatedwearcanpresentsomewhatofa problemincertainapplicationsHowever,specializedcoatingsandlubricantshavebeendeveloped togreatlyalleviategallingandotherdifficultiesinselectedapplicationsEachapplication,~ere [email protected],shouldbeanalyzedtodeterminetheoptimufisystem mbeussd Normally,protectivecoatingstoeliminatecorrosioneffectsarenotrequiredfortitaniumThe everpresentoxidesurfaceaffordsampleprotectioninmostambientenvironmentsandinawide rangeofcorrosivemediaIncases’wherecoatingsareneeded,suchasforprotectionagainstfriction wear,erosion,andelevatedtemperaturecorrosion,specificmaterialsandtechniqueshavebeen employedforspecificapplicationsDecorativeorothernonservicerequiredcoatingscanalsobe applied Therelativepriceoftitaniumanditsalloysisanimportantconsiderationindesignapplications Ahhoughtheinitialunitpriceoftitaniummaybeconsideredhigh,weightswings,superiorcorro sionresistance,andotherdesignfactorsmaywarrantitsselectionoverotherstmcturalmaterials foragiveniobIndeed;forcertainapplications,weightswingsresultinginincreasedpayloadcan morethanoffsetinitialcostsand‘perhapsinthelongrunprovelesscostlythanlowerpriced materials 2TitaniumAlloyAvailabilityDesignationsThetitaniumindustryoftheUnitedStates didnotachievesignificsmtsizeuntilthelate1950’sHowever,itwasanimportantindustryfrom theviewpointofitsmilitaWpotentialandreceivedconsiderableindustrialandgovernmental researchanddevelopmentfundingThissuppomstimulatedsteadygrowthandgeneratedanad vancedtitaniumtechnologyDuringthecourseofitsexistence,theindustWhasdevelopedabout 50differentgradesandcompositionswhichhavebeendescribedascommercialApproximatey 30alloycompositionsandunalloyedgradesoftitaniumarecurrentlycommerciallyviableThese arelistedinTable11TableIllgivestypicalproducercompanydesignationsforthesealloys AsshowninTable11,themajortypesof’titaniumalloysare:alpha,alphabeta,andbeta Othertypesareknownasnearalpha,nearbeta,andalphadispersoidtypesAsthetypenames suggest,theclassificationisbasedonthedominantmicrostructuralfeaturesofthealloysFor example,unalloyedtitaniumgradesarepredominantlyofhcp(alphaphase)structure,betaalloys arebcc(betaphase),andahostofcompositionsareofmixedhcpandbccstructure(alphaplus betaphases)Alphadisperaoidtypeshaveintermetall(ccompoundphaseinterspersedwiththe alphamatrixphaseSeveralotheralloys(notablythosecontainingsilicon)alsocanexhibitinter metallicphaseinthemicrostrurxum Aluminumandoxygenarethealloyadditionscapableofstabilizingthealphaphaseintitanium andinaeneralincreasingamountsoftheseelementsresultinthestabilizationofincreasingamounts ofthealphaphaseBetastabilizingadditionssuchasvanadium,molybdenum,mangane&,ironand chromium,causethestabilizationofthebetaphasegenerallyproportionaltotheamountofbeta [email protected]ombinedinthealloy Mostofthecommercialalloyshavecombinationsofalphastabilizingandbetastabilizingadditions toimpartthecharacteristicsdesired Themanyalloysavailablecollectivelyprovideaverywiderangeofmechanicalandphysical propertiessuitableformanyapplicationsSomealloys,forexample5621S,wereformulated specificallytohavegoodelwatedtemperaturecharacteristics(egcreepstrength)Othersfor exampleBetaIIIandTt8Mo8V2Fe3Al,weredesignedforimprovedcombinationsofformatijlity, deephardenability,andhighstrengthSomealloys,forexampleTi6Al4V,areveryversatile, 3Downloaded from http://wwweveryspeccom IMILHDBK697A 1JUNE1974 TABLEIITITANIUMALLOYSOFCURRENTGENERALINTEREST NominalComposition,w%AlIoyTypeCommon‘ Name(a) UrralioyadTi,+95(b)AlphaCP Unalloyedfi,+92(b)AlphaCP Unalloyed~,9901(b)Alpha CP TiOl5to020PdAlphaPdalloy Ti5Al25Sn(c) AlphaA11O Ti1to2Ni Alphadispersoid Ti2cu Alphadisperaoid Ti2,25AlllSn5ZrlMoO2SiNearalpha 679 Ti5A143Sn2ZrlMoO25Si(d)Nearalpha 5621S Ti6Al2Snl5ZrlMo035Bi01SiNearalphaTi11 Ti6Al2CblTaO8MoNearalpha 6211 Ti6AllMolv Nearalpha 811 Ti8MnAlphabeta 8Mn Ti3Al25V Alphabeta 325 Ti4Al3MolV Alphabeta431 Ti5Al2Sn2Zr4M04Cr AlphabetaTi17 Ti6A14V(c) Alphabeta 64 Ti6Al6V2Sn Alphabeta 662 Ti6A12Sn4Zr2Mo(e) Alphabeta 6242 Ti6Al2Sn4Zr6MoAlphabeta 6246 Ti6Al2Sn2Zr2Mo2Cr02SiAlphabeta 62222 Ti7A14Mo Alphabeta74 Ti1A16V5Fe Nearbeta165 Ti2AlllV2SnllZr 8etaTranaage129 Ti3Al8V4Cr4M04ZrBeta BetaC Ti45Sn6Zr115,M0 8etaBetaIll Ti6Mo8V2Fa3Al Beta 8823 Ti13VllCr3Al Beta1311:3 Note: (a) (b) (c) (d) (e)Producernomenclaturevariessincesomecompaniaauseacodefordesignatingproductswhile otherauselogicalsymbolssuchasthecompanynamefollowedbythecompositioninalpha numeric,formSeaTable3forguidance severalgradeaofunalloyedtiteniumareproducedwhich’differinimpurityIwel,hence strengthandductility HighpuritygradesofthesealloysareavailableandaredesignatedwiththesuffixELI,meaning ExtraLowInteratitials Amodificationofthisalloy,Ti5Al5Sn2Zr2Mo025Si,maybecomecommercial Asiliconcontaininggradeof6242isalsoavailable 4Downloaded from http://wwweveryspeccom 5Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 Ihavingpropertiesintermediatetosomeofthespecialtyalloysbuthavingbroadutilityinpartdueto theintermediacyTheTi6Al4Valloyisinfactthemostwidelyusedtitaniumalloy(>50%)with thenextmostusedtitaniummaterialsbeingtheunalloyedgrades(20%)”;Thenextmostusqj materialsaretheTi5Al25SnandTi6Al6V2Snalloys(7%each)andallotheralloysareusedto alesserextentInselectinganalloyforaparticularapplication,itisgoodpracticetonotonlyex amineandmatchthepropertiesavailableforamaterialwiththerequirementsbuttodiscussthe selectionwithproducers 3AvailabilityofTitaniumFormsandsizesAwiderangeofunalloyedandalloyed titaniummillproducts,castings,andpowdermetallurgyproductsareproducedbytheindustry However,notalIformsandsizesofproductsareavailableforeachalloyorgradeoftitanium availableandnosinglecompanyproducesafullrangeofproductsOntheotherhand,individual productformsareusuallyavailablefromanumberofsourcesThusthissectionisofferedtoaf fordthetitaniumuserguidanceindeterminingcertainlimitationsandrestrictionsconcerning productavailability Thebasictitaniumproductiscalledspongetitaniumbecauselumpsofmetalextractedfrom theprimarytitaniumore(rutile,TI02)havetheporosityofsponges(Otheroressuchasitmenite, areusedinadditiontorutilebyforeignspongeproducers)TheKrollProcess(namedforDr WilhelmKroll)isusedbythecommercialproducerstowintitaniumfromrutileThisprocessisa batchoperarionrequiringstringentcontrolinordertomaintainpurityTitaniumspongeissubject toatmosphericcontaminationunlesssuitablyprotectedSpongeissubsequentlypurifiedandcorn pattedintoelectrodesformeltingandremeltingintheproductionofingot(orcasting)Titanium metalproduction,fromoretofinalingot,usualIyfollowsthebasicstepsoutlinedbelowandis shownschematicallyintheillustrationofFigure1 ChlorinationRutileoreisreactedwithchloririegasandcarbonatelevatedtemperaturestoyield tlfamumtetrachloride(TiC14),acolorlessliquid,andthecarbongases(CO,C02)arxoidingtothe followingreactions: Ti02+ 2C12+cTIC14+ C02+heat Tio2+ 2CI2+2CTiC14+ 2C0+heat ASindicated,thesereactionsareexothermicandarecarefullyconductedin largereactionv~elsto produceaspureanintermediateproduct(TiC14,[email protected]“tickle”)aspossibleAdditional purificationof“tickle”indistillationtowersisusuallynemaaery MagnesiumReductionTheTiC14iscombinedwithmoltenmagnesiummetalina’&eel reactorunderacontrolledatmospheretoyieldtitaniummetalinspongeformMagnesiumchloride (MgC12)isabyproduct(TheM9C12iselectrolyzedtorecapturechlorine gasandmagnesium metal,bssthofwfsicharerecycledthroughtheprocess)Thereactionsare: Tic14+ 2Mg Ti+2MgC12 MgC12(byelectrolysis] Mg+ C12 Sodiuminsteadofmagnesiumisusedinthesametypeofreactiorzs”bysomeproducersoftitanium PurificationTitaniumspongeisplacedinleachingtankswhereacidandwaterremovetrace quantitiesofmagnesiumchlorideandresidualmagnesiumAnothermethodofremovingthe= impuritiesfromspongeisvacuumdistillationProducersoftitaniumspongeintheSovietUnion 6Downloaded from http://wwweveryspeccom 1“ m ou ,C, ,“1 u,aaaa r+ UAC1OS ~ Ii_ MILHDBK697A 1JUNE1974 1I& minns nusXw 1 I?munIMra II WuMsD ,, ELclpm&& LUOI!NGrANxcc+wwAIu Eucmwt ~woy da, ,m CortesyofTitaniumhietalsCorportiomd America FIGURE1TitaniumProcessingfromOretoIngot andJapanmakeaveryhighqualityproductbythismethodConsiderablequantitiesofforeign producedspongetitaniumareimportedbytheUnitedStates Melting–Spongetitaniummayb’compactedastheonlyconstituenttomakeelectrodes forproducingingota,or,ifanalloyisdesired,spongeismixedwithothermetallicingredients beforecompactingelectrodesforthemeltingoperationAnelectricarcmeltingprocessconverts thecompactedelectrode(consumableelectiode)intoaprimaryingotwhich,inturn,isremelted intoafinalingot(triplemeltingmaybeusedtoproduceapremiumqualityingot)Another methodofmakingprimaryingot,thatofmeltingsponge,alIoyadditions,orscrap,bycontinuousy feedingsmallunmmpactedparticlesofthechargeintothemoltenpoolofmetalcreatedbythearc, isusedbysomeingotproduce=Ineithermethod,meltingisaccomplishedinvacuumfurnaces whichremovesvolatileimpuritiessuchashydrogenandn?sidualMgC12 Thetypicaltitaniumproductformsmanufacturedfromdomesticandforeignspongebythe USindustryarelistedinTableIVItistobenotedthatthisisatypicallistinganddoesnot includeallproductsthatcanbemade,forexample,onspecialorderToillustratesomeexceptions, wi;eofTi5Al25SnandTi8AllMelValloys,extrusio,rssofTL4AI3M0lValloy,andcastings ofTi115Mo6Zr45SnalloycanandhavebeenproducedIrsquiriestoproducersshouldbemade todeterminecurrentavailabilityofunlistedproductsforanydesiredmaterial 7Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEIVTYPICALTITANIUMPRODUCTFORMS NominalComposition,wt% TypicalProductForms(n) UnalloyedTI,~95(b)Allformsareavailable Unalloyed~,q92(b) inunalloyed UnalloyedT,~9r)(b) grades TiOl5to020Pd Allforms Ti5Al25Sn(c) 1,B,b,P,S,E,C Ti1to2Ni B,b,P,S Ti2cu B,b,P,S Ti225Al1lSn5ZrlMoO2Si 1,B,b,P,S Ti5Al6Sn2Z4lMoO25Si[,B,b,P,S Ti6Al2Snl5ZrlMoO35BiO1Si l,B,b Ti6Al2CblTaOBMo 1,B,b,P TL8AIlMOlV 1,B,b,P,S,E Ti8Mn l,s,s Ti3Al25V S,s,f,T Ti4Al3Molv P,s,s Ti5Al2Sn2Zr4Mo4Cr 1,6,b Ti6Al4V(c) Allforms Ti6Al6V2Sn 1,B,b,P,S,E Ti6Al2Sn4Zr2Mo 1,B,b,P,S,E Ti6Al2Sn4Zr8Mo Ti6Al2Sn2Zr2Mo2CXL)2Si1,B,b,P,S B,b,P Ti7Al4Mo 1,B,b,P TilAl8V5Fe 1,B,b,W TF2AI1lV2SnllZr l13A18V8Cr4Mo4ZrB,b,P B,b,W,P,S,S,f,T Ti45Sn6Zrl15M0 Ti8Mo8V2Fe3AlB,b,W,P,S,S,f,T 1,B,b,w,P,S,S,f,T TLl3V1lCr3Al 1,B,b,w,P,S,s,f,T Note: (a) (b) (c)I=ingotbloom,B=billet,b=bar, w=wire, P=plate, S=sheet,s=atrip,f=foil, E=extrusion, T=tubing,C=casting Therearewveralunalloywltitaniumgradasavailable HighpuritygradesofthesealloysataavailableandaredesignatedwiththesuffixELl,meaning ExtraLo”wInteratitials @o&Thelargesttitaniumingotproducedtodatewasabout40inchesindiameterand weighedabout11tons(Krupp,WestGerrnariyin1966)However,more~ommonly,ingotsof ’30inchesindiameterx‘1O,OOOpoundsand15,000poundsareproduceddomesticallySmaller ingotsarealsoproducedIngotsareusuallyconvertedintocastingsormillproductformsprior,to sale to therrajorusersoftitani”um 8Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 Castings–Titaniumcastingsareproducedbyremeltingingotorbillet(usedaselectrode)in 1“ socalladskulltypevacuumfurnace:havingthegeneralarrangementshowninFigure2Thecasting producingcompaniesdifferintheiroperationsandcapabilitiesduetotypesofmoldsusadand equipmentsize,Theymaybeconsideredintwocategories:(1)thosethatuseinvestmentmolds, 1and(2)thosethatuserammedgraphitemoldsInvestmentcaatingtechniquescanpotentiallypro ducemoreintricatepare,clozertolerances,andbetter ascast surfacefinishesTherammedgraphite proces$,becauseofgreaterfIexibilityingatingandrisaring,ispotentiallycapableofproducing castingshavingbetterinternalquality,highermechanicalproperties,largercastconfigurations,and lowercostsHowever,nooneprocessissuperiortotheother;bothhavetheirplaceandbothfill specificneeds Ramm”adgraphit~moldcastingscanandhavebeenmadeinquitelargesizesA240CZpound pourcan“bemadetoyieldcastingsofupto2000pounds(balanceofmetalingatesandrisers) Largecastingshaveamaximumdimensionof100inchesThemorecommonsizelimitationsof rammedgraphitemoldcastingsare400poundswithdimensionsfittingwithina52inchdiameterx 32inchhighenvelopeIntricateshapesaswellaspreformshapesforforgings(eg,enginerings) aramadeinthistypemold I 11 2 / 1 2Vacuumseal 3Materialfeed 4Am 5Funucechambsr 6Vacuum 7TNtatlemeltingcrucilie 8Mold 9Valvebcdv 10Moldtable 11Moldchamber 12Vacuumsad Y“ 8 F :;*::;::~::::: 9 ‘:::; !:: ::: ::::: ,:,:, :> ,,:: :::: melting”” ::;:::: ,:,:,= 12 ,: ““”””D ::x ,::::::: Op?rationElectrodeisrapidlymaltedinto7toobtaina ,:F, ,, 10 ,,, samarhaatedtitaniumorallcvpool wfsichisthenimmediately :::::: ~$IIpouredAboutorequanerofthemeltisretainedasa “skull”,liningtheinteriorof 7Hencethename,“skull , FIGURE2GeneralArrangementandOperationofMeltingFurnaceandCastingApparatus UsedbyTitaniumCastingFoundries 9Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 Investmentmold”castingshavebeenproducedinmuchsmallersizesthanrammedgraphite moldtestingsMaximumweightsofabout50poundsandmaximumenvelopesofabout2x2x2 feetareofferedWallthicknesslimitationsofinvestmentmoldcastingsare>bouthalfoframmed graphitemoldcastings(0050inchcomparedwith010inch)andsurfacefinishpotentialisbetter forinvestmentmoldcastingsIntricateshapeswithgooddimensionaltolerancesarepossiblewith investmentmoldcastingsThemechanicalpropertiesofcastingsproducedbyeitheroftheavailable techniquesarenotquiteasgoodasthoseofmostwroughtmillproducts Forgings,Billets–Ingotsareconvertedtoingotbloom,billet,orbar,andtheseareoffered bytheprimarytitaniumproducers(themelters)forsecondaWprocessingWhileeachofthemajor titaniumproducershasforgingcapability,mostoftheforgingsproducedaremadebycompanies specializinginthisaspectofthetitaniumbusin%s(eg,WymanGordonCompany)Forgedbillets generallyhaveacrosssectionalareaof16squareinchesormoreandareavailableinrounds,squares, rmtangles,andoctagonsForgedshapesmaybeproducedbyhammer,press,orringrolltypeopera tionsandareusuallyclassifiedintofourdimensionaltolerancegroups(1)blocker,(2)conven tional,(3)close,and(4)precisionTableVgivesexamplesofthetypesofforgingshapescommonly producedandtheavailabilityofsuchshapesinthevarioustolerancecategoriesForgingsaslarge as4000poundsand22feetlongorassmallasunderonepoundhavebeenmadeDetailsfor determiningshape,size,andtolerancelimitationscanbeobtainedfromnumerousforgingcorn panicsexperiencedinworkingwithtitanium TABLEVAVAILABILITYOFTITANIUMALLOYSINFORGINGSBY SHAPEANDTOLERANCES [Forgingsclassifiedbydimensionaltolerance] , Availability(a) BlockerTypeConventional ClosePrecision ForgedShape Tolerances TolerancesTolerancesTolerances Disks A ALLS Cones AA Lu Hemisphereso A ALu Cylinders AAL u Blades A AA A Airframe(fittings) AA‘“A LS Airframe(ribandweb) A ALLS Rings, A ALu Note: (a)Code:A= L= LS= lJ= Readilyavailable Limitedavailability Limitedavailability=smallpartsonly Virtuallyunavailable 10Downloaded from http://wwweveryspeccom I ~ I I I MILHDBK697A 1JUNE1974 Bar,RodandWire–Barandrodareavailableinrounds,hexagonal,squares,andrectangles Rolledbar,whichhasacrosssectionalarearangingfrom16squareinchesdowntoabout14square inches,hasalengthrestrictionbecauseofannealingfurnacelimitationsLengthsupto?0feetare possible,buttheusuallengthsproducedare16to25feetRoundbarshavingdiameterslessthan 03125incharepricedaswire:coillengthsinthesmallerdiametersrangebetween300and500feet Rodsandbarsarefrequentlyconvertedtoenduseitemsbyforgingandmachiningorsimply bymachiningWireisproducedforuseasweldfillerandforsuchendusaitemsasspringsand fastenersMostalloysareavailableinbarandrodformbutsaveralalloysarenotroutinelyavailable inwireform Plate,Sheet,StripandFoilPlate,sheet,andatripareflatrolledproductsavailableinmany alloy[email protected]tafewalloysand unalloyedtitaniumPlateisgenerallydefinedas01875inchormoreinthicknessandcommonly insizeslistedbelow Thickn&s,inchWidthxLenqth,inches 018750249100x42O 0250037411OX42O 03750499120x450 05000749130x480 07500999140x(a) 10andup145x(a) (a)Anypracticallengthwithiningotsizelimitations ThethicknessandflatnesstolerancesofalloyplatearegiveninTableV1 ~ Flatrolledtitaniumproductsarepricedassheetifwidthis24inchesorgreaterandthickness Iislassthan01875inchTheproductispricedasstripwhenitislessthan24inchesinwidthThe “availabilityofsheetandstripwithregardto,sizeandwmealloylimitationsisindicatedbythedata ofTableVI1Notethatinthethinnergages,andthisisespeciallytrueforfoilgages(<0006inch thickness),onlyunalloyedtitaniumandafewofthealloysareavailableinthisform ExtrudedShapesExtrudedshapesarecurrentlysuppliedinawidevarietyofconfigurations, althoughmostofthewarebasicangle,tee,orchannelshapesSectionthicknessesganerallyvary from0125to125incheswithincircumscribingcirclesof150to110inchesindiameterMost shapes,howaver,fitwithina3to5inchdiametercircleLengthsusuallysuppliedintheannealed conditionvarybetween20and75feetLengthsupto40featcanbesuppliedinthesohstion treatedartdaged(STA)conditionInthepresentstateofdevelopment,asextnsdedtitanium alloysarenotofrequisitequalityfordirectusebecauseofsurfaceroughnessorsurfacecontamina tionThusextruderssupplyproductinanoversizeconditiontoallowasuitableenvelopefor machiningtofinalsizeandacceptablesurfacefinishMinimumenveloperequirementsvarywith usersSomeallowaslittleas0020inchexcesspersurfacewhileothersrequireasmuchas0125 inch“excesspersurfacePartdesignandapplicafioninfluencethaarequirementsResearchand de~elopmenteffortsarecontinuingtowardsthegoalofsupplyingnetextrusionsOfacceptable surfacefinishandprecisiondimensionaltolerancesRedrawing,straightening,andheattreatment techniquesareapartofthisdevelopmenteffort 11Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEVITYPICALthicknessANDFLATNESSTOLERANCESOFCURRENT TITANIUMPLATE : VariationfromFlat ThicknessTolerance,inSurface,in(a) Plate ThicknessVariationin Thickness,in, WidthOverage Width15feet 01875to0375Maxavailable0050 UPto48 075 0375to100Maxavailable0060UPto48050 46to76062 100to200Maxavailable0070UPto48 05too2(b) 48to76 06too3(b) Note: (a)Plateofspmialflatne=(O~Oinchmeawredanytiere)isavailablebytheVacuumCreep FlatteningP/CF)process (b)Flatne=increaseswithincreasingthicknesanddecreaseswithincreasingplatesize TA8LEV1l AVAILABILITYOFTITANIUMALLOYSHEETANDSTRIP(a,b) Thickness,inMaximumWidth,MaximumLength, inin 00060012 26Coil(c) 00120016 [email protected](c) 00160020 36coil(c) 00200032 44,Coil(c) 46126144 00320060 44~$cl 48 144 00600187 46144 Note: (a) (b) (c) Unalloyedgradesaregenerallyavailableingreaterwidthsatthinnergagesthanalloygredes TolerancesforallgagesmeetAMS2242specifications Coilonlyavailableinselectgrades,ie,unalloyedTi,Ti5Al25Sn,Ti–6Al4V,andbeta alloys 12Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 ITubinqSeamlesstubingisproducedinunalloyedtitanium,TL3AI2,5VandTi6Al4V(in somesizes)commercially,andinsuchbetaalloysasTi115Mo6Zr45SnandTi3AL8V6Cr4Mo4Zr onadevelopmentalbasisSeamle$stubingisproducedfromextrudedtubehollowsandissizedto finishdimensionsbydrawingortubereducingoperations(usuallycoldworkedwithintermediate annealing) Unalloyedtitaniumseamlesstubingisavailableindiametersrangingfrom0062inchto severalinches(>8~6)withwallthickness&lowas0004inchinthesmallerdiameters(large diametertubescanonlybesuppliedinthickwallsizes)Diametersof075to100inchwithwall thicknessesrangingfrom003to004incharethemostusedSeamlessalloytubingissuppliedin amorerestrictedsizerange:theTi3Al25Valloy,forexample,isavailableintubeformindi ametersof025inchto175inchwithwallthicknessesbetWeen0012to0030inchLengthsup to34feetasvacuumannealedareavailableThaTi3Al25Valloyisavailableinqualitysufficient tomeetaircmfihydraulictubingspecifications Inadditiontoseamlesstubing,animportantsupplyofrolledandweldedtube(withlongi tudinalseamweld)isavailableSupplierscanprovidebothunalloyedandalloyed(TL6AI4Vis common)rolledandweldedtubinginsizesrangingfrom1to10inchesdiameterwithwallthick nessesbetween0012to0168inchGenerallyonlythemoatweldableandstableafterwelding titaniumalloysareavailablesuchasTi6Al4V,Ti3Al25V,Ti5Al25Sn,TF8AIIMoIV,and Ti6Af2Sn4Zr2MocompositionsStructuralmembersandcorrosionresistantpipingcommonly utilizerollandweldtubing PowderMetallurgyProductsUnalloyedandalloytitaniumpowdemaremadebyseveral differentprocessesincludingmechanicalattrition,gasattrition,chemicalreduction,hydrid~ dehydride,andcomminutionfromthemoltenstateeg,powdersizedropletsfromarotating electrodeAlloypowdersalsomaybeobtainedbyblendingunalloyedtitaniumpowderwith powdersofthedesiredelementsEnduseproductsaremadebydiepressingthepowderstoshape andsubsequentlysinteringsuchcompactsorbysimultaneouslyhotpressingandsinteringthe powdersResearchalsohasbeenconducted‘inproducingforgedproductsfrompressedand sinteredpowderpreformsThelatterproductsapproachfulltheoreticaldensityandhavemech anicalpropertiesequivalenttowroughtmetalpropertiesprovidedthepowderusedisofhighest quality(oxygenasacontaminantisoneoftheproblemswithpowders),Theprincipalreasonfor thequestforproductviapowdermetalIurgyiscostreductionsincenetshapescanbeproduced withouthighassociatedscraplossesandmachiningtimeHowever,exceptforsomespecialized purposesandpartssuchasporoustitaniumfilteringelements,titaniumhardwareviapowder metallurgytechniqueshasnevermaterializedasamajorsegmentofthetitaniumindustryCurrently, qua(itytitaniumenduseitemscanbemadeatreasonablecostsbutthemethodisnotpopuIarfor producinghardware I13Downloaded from http://wwweveryspeccom MILHDBK697A lJUNE1974 , SECTIONII SPECIFICATIONSANDPROPERTIES TitaniumMaterialsSpecifications 4 GeneralBoththeGovernmentandnongovernmenttechnicalsocietiesissuespecifications fortitaniumandtitaniumalloysThissectioncoversthecurrentspecificationsfortitaniummate rialspreparedbytheGovernment(MILspecifications),bytheAmericanSocietyforTestingand Materials(ASTMspecifi~tions),theAerospaceMaterialsSpecifications(AMS)issuedbythe SocietyofAutomotiveEngineers(SAE)andbytheAmericanWeldingSociety(AWSspecifications) 5MilitaWSpecificationsSpecificationspreparedbytheGovernmentontitanium materialsarelistedinTableVlll,andaredescribedinthefollowingparagraphsItshouldbenoted thatmilitaryspecificationscurrentlyinforcehavedifferentpreparationandcoordinationdates, includelimitedcoordinationspwificationsaswellasfullycoordinatedspecifications,andareincon sistentonefromanotherinalloycoverageandcompositiondesignationsFurtherrsomeofthe titaniummater(alscurrentlybeingproducedarenotincludedinanymilitaryspecificationAddi tionally,SpmificationsincludealloysnotnowbeingproducedormuchusedTherefore,inaneffort torelatecurrentlyavailabletitaniummaterialswiththedescriptionsanddesignationsofferedin someoftheimportantmilitaryspecifications,thecorrelationtabulationofTableIXisgivenThis I tabledoesnotincludecomoo~tiondeaiqnationsfromMlLT46035andMlLT46036&causeno specificcompositionsared&cribedther~insimilarly,titaniummaterials(spongeandpowder)are describedgenerallyinMlLT13405CThetablealstidoasnotincludedesignationsfrom MlLT46077sinceitrefersspecificallyytotheTi6A14Valloywhichisnototherwisedesignated Specifications,standards,etc,requiredbysuppliersinconnectionwithspecificprocurement functionsshouldbeobtainedfromtheprocuringactivityorasdirectedbythecontractingofficer MlLR81586(22July1970)–RodsandWire,Wdding,TitaniumandTitaniumAlloys Thisspecificationcoverstherequirementsforbaretitaniumaridtitaniumalloyfillerrodsandwire suitableforusewithgastungstenarc(GTA)orgasmetalarc(GMA)weldingprocessesAlloytypes andcompositionsaregiveninTableIX Chemicalcompositionrequirementsandform,sizeand weightrequirementsaregiven bMlLT13405C(27May1966)–TitaniumPowderThisspecificationcoversonetype andonegradeoftitaniumpowderwhichisintendedforuseinpyrotechnicmixturesThisgradeof titaniumpowderisnotintendedforuseinmanufacturingstructuraltitaniumpartsbypowder metallurgytechniques cMILT009047F(25March1971)andAmendmentNo1(19September1972)– [email protected]eenapproved forpromulgationasacoordinatedrevisionofMlLT9047E(ie,itissubjecttomodification) Howeveritmay’beusedinprocurementofaircraftqualitywroughttitaniumandtitaniumalloy bars,billets,slabsandforgingstockinlieuofMlLT9047Esinceitdescribesthesamematerials underidenticaldesignations(seeTableIX)MlLT009047Fwaspreparedtospecificallycover macrostructuralandmicrostructuralaspectsofthetitaniummaterialsincludedinMlLT9047E 14Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEVIII,MILITARYSPECIFICATIONS–TITANIUMANDTITANIUMALLOYS SpecificationNoOateTitle MILR81588 MlLT13405C MlLT009C47F AmendmentNo,1 MlLT9047E MILF83142A MlLT46038A AmendmentNo1 AmendmentNo2 MILT81556 MlLT9046H MlLT46035A AmendmentNo1 MlLT46077A MlLH81200A AmendmentNo1 MlLW6858C AmendmentNo122July1970 27May1965 25March1971 19September1972 15June1970 1December1969 28October1966 14March1967 5October1972 20March1966 14March1974 28October1966 5October1972 28June1968 12September1966 24March1969 20October1964 28’June1965RodsandWire,TitaniumandTitanium Alloys TitaniumPowder TitaniumandTitaniumAlloyBarsand ForgingStock TitaniumandTitaniumAlloyBarsand ForgingStock Forging,TitaniumAlloys,Premium Quality TitaniumAlloy,Wrought,Rods,8arsand Billets(forCriticalApplications) TitaniumandTitaniumAlloys,8are,Rods, andSpecialShapedSections,Extruded TitaniumandTitaniumAlloy,Sheet, StripandPlate TitaniumAlloy,HighStrength,Wrought, (forCriticalApplications) TitaniumAlloyArmorPlate,Weldable HeatTreatmentofTitaniumand TitaniumAlloys Welding,Resistance:Aluminum Mag~esium,NonhardeningSteelsor Alloys,NickelAlloys,HeatResisting AlloysandTitaniumAlloys;Spot andSeam dMlLT9047E(15June1970)TitaniumandTitaniumAIIoYBarsandForgingStOck I Thisspecificationcoversbars,billets,andbloomsofseveralofthematerialsincludedinsuper~ded MlLT9C47D,lessfourcompositionswhicharenolongermuchused,plusthreenewalloys currentlybeingproducedTableXgivesthecorrelationofMlLT9047C,MlLT9047Dand MlLT9047E(sameasMlLT009047F)designationsThespecificationgivesthecomposition 15Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 16Downloaded from http://wwweveryspeccom I I MILHDBK697A 1JUNE1974 TABLEXCORRELATIONTABLE:MILT9047 MILT9047EMILT9D47DMILT9047c(rJ) AlphaAllovs Composition1unalloyed Composition25AI25Sn Compmition35Al25SnELI Composition58AIlMelV Alphabetaalloys Composition66AI4V Composition76AI4VELI Composition86A16V2Sn Composition97Al4Mo Composition101lSn5Zr2AllMo Composition116A12Sn4Zr2Mo Composition146A12Sn4Zr6Mo BetaAlIoys Composition1213V1lCr3AI Composition13115Mo6Zr45SnTypel–Commerciallypuretitanium CompositionAunalloved TypenAlphatitaniumallovs CompositionA(5Al25Sn) CompositionB(5A125SnELI) CompositionC(5Al5Zr5Sn)(b) CompositionD(BAllMoIV) TvpeIllAlphabetatitaniumalloys CompositionA(6AI4V) CompositionB(6AI4VELI) CompositionC(6A16V2Sn) CompositionD(7AI4Mo) CompositionE(4A14Mn)(b} CompositionF(5A115Fel5Crl5Me)(b) CompositionG(1lSn5Zr2AllMo) CompositionH(4A13MolV)[b) CompositionI(6Al2Sn4Zr2Mo) TVpelV–Betatitaniumallovs CompositionA(13V1lCr3AI)Class1 Class2 —— — Class5 — —— —— Class6 Class7 —— —— — Note: (a)Cla5S3,3A15CrandClass4,2Fe2Cr2Mo,ofMlLT9D47c weredeletedinthe“0”revision, I I (b)Commerciallyunavailable 17Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 limitsandmechanicalpropertyrequirements(minimums)forallmaterialscoveredintheannealed conditionpervariousthicknessrangeswherethatisapplicableInaddition,thesolutioptreatedand aged(STA)mechanicalpropeniesofcompositions6through13aregivenforthethicknessranges applicabletothespecificalloys eMILF83142A(1December1969)–“Forging,TitaniumAlloys,PremiumQualityThis specificationcoversunalloyedtitaniumandtitaniumalloyforgingssuitableforaircratiandaero spacecomponentsandsupersedesMlLF83142TableXlgivesthecorrelationofMlLF83142 and83142AdesignationsItistobenotedthatthealloylistsreflectalloyavailabilityatthetime ofspecificationpreparationandthatcompositioncategorieswerechanged(Type1,11,II1,andIV categorynOmenclaNredropped)CompositiondesignationcorrelationbetweenMILF83142A andMlLT9047EisgiveninTableIXSpecificationMlLF83142Agivesthecompositionlimits andmechanicalpropertyrequirements’(minimums)forallmaterialscoveredintheannealedcondi tionpervariousthicknessrangeswherethatisapplicableandalsothesolutiontreatedandaged (STA)mechanicalpropertiesofcompositions6through13forthethicknessrangesapplicableto thesealloysInaddition,mechanicalpropertyrequirementsforvariousconditionsofthealpha alloys,Ti5Al25SnandTi5Al5Zr5Sn,aregiven fMILT46038A(28October1966),AmendmentNo1(14March1967)andAmendment No2(5October1972)–TitaniumAlloy,Wrought,Rods,BarsandBillets(forCriticalApplica tions)Thisspecificationcoverswroughttitaniumalloyrods,bars,andbilletswhicharesuitablefor processingbyhotformingandheattreatmentorbyheattreatmentonly,orfordirectapplication tohighlystressedcriticalcomponents,anditisrequiredforusewithSpecificationMlLT46035A SpecificationMILT4603BAdescribesmechanicalpropertyrangesforbarsandbiIletsofvarious sectionsizesMlLT46035Acovershighstrengthwroughttitaniumalloys,inannealedorheat treatedshapes,havingacriticalsectionthicknessofonequartertotwoandonehalfinches,for criticalcomponentsotherthanarmor,suchastubes,chambers,andnozzles MlLT81556(20March1968)–TitaniumandTitaniumAlloys,Bars,Rodsandspecial Shap~dSections,ExtrudedThisspecificationcoversextrudedtitaniumandtitaniumalloybars, rods,andspecialshapedsectionsThecompositionscoveredbyMlLTB1556havethedesignations giveninTableIXThecompositionrequirementsandthemechanicalpropertyrequirementsinthe millannealedconditionpervariousthicknessrangeswherethatisapplicablearegivenThemech anicalpropertyrequirementsforvarioussectionthicknessesofTL6AI4V,Ti6Al6V2Sn,and Ti7Al4Moalloys,aregivenalsoforthesolutiontreatedandaged(STA)conditionDimensional tolerancerequirementsalsoaregiven hMlLT9046H(14March1974)–TitaniumandTitaniumAlloy,Sheet,StripandPlate Thisspecificationgivescomposition(seeTableIXLmechanicalproperty(seeTableXIX),and dimensionaltolerancerequirementsforthecompositionscoveredintheappropriatesectionsize andheattreatmentconditionThematerialsprocurableunderthespecificationareintendedfor structuralandengineeringapplicationsinairbornevehiclesandequipmentbaseduponthecombina tionofexcellentmechanicalpropertiescoupledwithlowdensityandcorrosionresistanceTable X11givesthecorrelationofthe“D”,,,E,,,,,F,,,,,G,,,and,H,,versions iMlLT46035A(28October1966)andAmendmentNo1(5October1972)Titanium Alloy,HighStrength,Wrought(forCriticalComponents)Thisspecificationcovershighstrength wroughttitailiumalloys,inannealedorheattreatedshapes,havingacriticalsectionthicknessofZ to2%inches,forcriticalcomponentsotherthanarmor,suchastubes,chambersandnozzles Mechanicalpropertyrequirementsaregiven 1 18Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 TABLEXlCORRELATIONTABLE:MILF83142 MILF83142MILF83142A TypeI–CommerciallypureAlphaAlloys Composition1–unalloyedComposition1unalloyed TypeII–Alphaalloys Composition25A125SnComposition2–5A125Sn Composition3–5A125SnELIComposition35A125SnELI Composition45A15Zr&(a)Composition4–5A15Zr5Sn Composition5–8AIIMoIVComposition5–8A1lMOlV TypeIII–AlphabetaalloysAlphabetaalloys Composition6–6AI4VComposition6–6AI4V Composition7–6AI4VELIComposition7–6AI4VELI Composition8–6A16V2SnComposition8–6A16V2Sn Composition9–7AL4M0Composition9–7AI4M0 Composition105AI15Fel5Crl5Me(a) Composition111lSn5Zr2AllMo Composition10–1lSn5Zr2AllMo Composition124A13MolV(a) Composition136A12Sn4Zr2MoComposition11–6Al2Sn4Zr2Mo TypeIV–8etaalloys BetaalIoys Composition1413V11Cr3Al Composition12–13V1lCr2Al Composition13–11,5Mo6Zr45Sn Note: (a)Commerciallyunavailableornotmuchused 19Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXII,CORRELATIONTABLE:MILT9046 — — rpe — — I — II — Ill — IV bmp A B c A B c D E F G A B c o E F G H A B c D hILT9046D ;7June1964 Jnallowd Jnalloyed Jnalloyed 5A!2s jA125SnELI jA15Zfi5Sn lA112Zr 7A12Cb1Ta 3A11M&iv —— 3Mn $AI3M01v 3A14V EiA14VELI 6A16V2Sn 7AMlMo ———— ——— 13V11Cr3Al ———— ———MILT9M6E 29Sep1965 Unalloyed Unalloyed Unalloyed 5A125Sn 5A125SnELI 5A15Zr5Sn 7A112Zr 7A12CblTa 8AIIMOTv —\27— 8Mn 4A)3M01v 6AI4V 6AI4VELI 6AI6V2S 7AI4M0 _——— 13V11Cr3Al —\27— —\27—\27 ———filLT9046F iApril1967 Jnalloyed Jnalloy?d 5A125Sn jA125SnELI —\27 —— —\27— 3AIlMOlV 5A12CblTaO6M( Btv!n 4AI3MDlV 6A14V BAL4VELI 6A16V2Sn ———— 6A12Sn4Zr2Mo 13V11Cr3Al ———— ———— ———— 20 tilLT009046G 120ct1970 — —— — —— —— —— — —— —— —\27 ——\27 —— 6AI4V(No6) 6A14VELI(No7 6A16V2Sn(NoB ———— 6A12Sn4Zr2Mo (No11) ———\27 ——\27 —\22—\27 ———— MILT9046H 14March1974 Unalloyed(40KSIYS) Unalloyed(40KSIYS) Unalloyed(55KSIYS) 5A125Sn 5A125SnELI — — 13AIlMolV 6A12CblTaO8Mo — ——— 6AL4V 6Al~4VELI 6AI6V2S — 6A12Sn4Zr2Mo 6AI4VSPL (SPecialLow,005H) 13V11Cr3Al 115MoBZr45Sn 3A1BV6Cr4Mo4Zr 6Mo8V2Fe3AlDownloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 iMlLT46077A(28June1968)TitaniumAlloyArmorplate,WeldableThis specificationcoversaweldablewroughttitaniumalloy6AI4VELI,armorplateinthemillannealed conditionwithcompositionrangesormaximumvaluesasshownbelow(valuesinweightpercent): Alv c“O*NHFe Ti ——————— 55653545T14,02012525Remainder ThenominalthicknessesofarmorplatecoveredbythisspecificationareXto2Zinches,inclusive MechanicalpropertiesandballisticrequirementsaregivenBallisticpropertiesarecontainedinthe Supplementwhichhasasecurityclassificationofconfidential kMlLH81200A(12September1966)andAmendmentNo1(24March1969)Heat TreatmentofTitaniumandTitaniumAlloysThisspecificationcoversfurnaceequipmentrequire mentsandtestprocedures,heattreatingprocedures,heattreatingtemperatures,andgeneralinfor mationfortheheattreatmentoftitaniumandtitaniumalloyitemsusedintheconstructionof militaryequipmentItalsodescribesprocedureswhich,whenfollowed,haveproducedthedesired propertieswithinthelimitationoftherespectivealloysSeveralcompositionsincludedinthis specificationarenotnowinproductionTherefore,representativealloyslistedinTableIIIarethe compositionsdescribedintheHeatTreatmentsectionofthishandbook 1MILW6858C(20October1964)andAmendmentNo1128June1965)Welding, Resistance,Aluminum,Magnesium,NonhardeningSteelsorAlloys,NickelAlloys,HeatResisting Alloys,andTitaniumAlloys,(SpotandSeam)Thisspecificationcoversrequirementsforresistance spotandseamweld)ngofthefollowingnonhardeningmaterials: (a)Aluminum,aluminumalloys,magnesiumalloys (b)Steels,heatresistingalloys,nickelandcobaltalloys (c)Titaniumandtitaniumalloys MlLW6858Ccoversweldingmachinequalification,andcertificationoftheweldingprocessor scheduleRadiographic,shearstrengthandmetallurgicaltestrequirementsaregiven 6AMSSpecificationsTheAerospaceMaterialsSpecifications(AMS)fortitanium materialsissuedbytheSocietyforAutomotiveEngineers(SAE)arelistedinTableXl11Sincethe AMStitlesaccuratelydescribethetitaniummaterialscovered,noindividualdescriptionsareneces saryHowever,asanaidinrelatingAMSspecificationswiththealloycoverageandmaterialforms describedinthishandbook,TableXIVisofferedThistableincludesalloyswhich,aretoonewto becoveredbyspecificationsandalloysthatarenolongermuchusedorproducedaswellasthose coveredbyCurrentAMSspecifications 7ASTMSpecificationsTheAmericanSocietyforTestingandMaterials(ASTM) specificationsfortitaniummaterialsarelistedinTableXVTheStandardsareissuedunderfixed designations,forexample6299inTableXVandtheyearoflastrevisionoryearofadoption, whicheverismostrecent,isgivenasasuffix,forexample,B29969TheASTMSpecification titlesaredescriptivewithregardtoproductformbutdonotdescribematerialcoverageexceptin generaltermsThereforeTableXVIisofferedtoshowmorespecificallythecompositionsand theirASTMdesignationsincludedinindividualspecificationsAsistheusualpracticein lOthermilitaryandnonmilitaryspecificationsforELI(extraIOWinterstitialcontent)grade Ti6Al4Vcalloutlowermaximumoxygencontents 21 IDownloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXIIIAEROSPACEMATERIALSSPECIFICATIONSPORTIT4NIIJMMATEfll&LS AMSNo,T,ue01 spclIicatin 49030 46Q1E 49028 4906 4!?378 4mB 49098 491OF 4Q11C 4912A 4913A 49158 49868 49170 491EC 48218 4923A 49248 49258 9260 4027 4920G a%w 6933A 40350 4936 4941 4%2 943 4951C ,953 49H6 4955 4954 49658 aca6Q 4w370 4%0A 4989 497X 4971A 4912A 4973A 4974 49750 4976 4971k 497BAfiat,,5b”,#mdStrbA”mdtL!55,[email protected](UMllW4dTil S%%S“{di%t+AIw*d8U70,[email protected]!*Id, fiat,Y1otands,rl*AmU!m40,0m*W*L!“ SmetcdStrkW3Al4V,COnlin$lvRohrl,Amealed R,,,s“,, lndSttiPWl4V,E”LoIwer’ti lndR’”916AI2S”4Zr2fkS01”!;0” lndPrecicitmimHe,, Tr,md Far~hw6Al2%4zr2M0,SoIt;n ldPrecipiutknHeatTreated h,,andW,,,115M0S0245S+%l”!in”“,,T,tted Bar,,hr~i”m l%Rinm6A16V2S”,Anmal?d,140,CC0Yield h>,Frw9> lmRinm6Al6V2S,50!amlPrecir,He,,Tre,“m >,,Jw X46, >,% ,,” >!,”,asal” >,”* ,M4m ,, ,, !, dadim $ & ,& ,, ,2 * “! ,:0 m ,s !, ,0 !0 ,0 ,, ,, :: !0 ,, ,, :: ,, ,, ,, * , ,: ,, : , , s : ,<0> :Xa, k at,m —, m 2, , :% 4, , 4,6 ,5 ,, , ,3 ::0 — , 4 , ,, ,, , ,s 30Downloaded from http://wwweveryspeccom MlLHDBK697A 1JUNE1974 I ,*o,?0 ,m ,m ,m ,m , , ,* !mo ;6s, n,70 >,**n 57,70 anmm!?0 mm m ,70 xemn ST!70 mmu n,70 non “ ,10 mma n,m :!s:A,m sm ,m _ >,,,*J7 Sr ,m >,”3?4ST,m WS* n!m yl;:m al:: X*,%7m ama ST ,m X, 3)MV4DUS4ZS A ,=0 Xmsn57*,m >WmSrm >,”s/ “,ss ?>:,:” ST,m ST!00 >,U74* Sr m Xo+m s, m %W14O ST !mo e, e,= U*6W,7,70 >,/4t“ s, ,70 yIlrI~57A,70 Sr ,m >,*!!”ST,m >,mzo Sr,m ynl::ST,70 ST,10 ,@o! ,ba ,m !M !m ,* ,s ,40 mo !m ,m ,m ,m ,m WY , ,+0 m ,: IN ,70 ,70 ,70 ,m :: mo!m ,70 ,70 ,?0 ,70 ,m !m,m,molea ,= ,m !Cu ,GY ,ea ,m ,m ,00 , , , , , l, ,, ,, a4 31Downloaded from http://wwweveryspeccom MILHD13K697A 1JUNE1974 rAOLExX,T”P,CALWNS8LEPROPERTYFIEOU,REMENTSGTM S?ECIFICAT,ONS SrriP,,swPl,tc(BK5721(d} undlovrd17tmiurn(Lmirondimntitul)135,524 UndlnwdTit*im(Itwrnedwwkmdi“*UIllthl*I1 E4~65m : Lhu$lowdlmnu”l11tomudiuIrc1I@i:wrtkkt,I552918 tillwcd%u,,hm,lHl@;dktur,;,uh) 4 : liau~v; 95 ~(d,~,:__ ::,B m5al25s,*[5 ‘&5 25 w _ lB15 6130!20 6120115 40 l;{?)1:20 Ulul!ovd 17”iwn, (L’W irm dhe,ui,uld W1OWlitm+nn 0t9m19dht* kmd intunitkls) wbw mti otdhh w intm,iud,) WbwdTiudum (Hip km Odlmunizbl$l li&u4v F135>5 F1m40 F26565 F4 F51%1: F6lm115 F7w4024 20 18 ;: 10 30m30 z25 m — _ _ T5U25S,T la12,0’26 PdO“wl,ndl”hod a*3,;,t,l m G1 c1 Ix C4 G5 w G7A Olu can 35m : : 55 m IiM HBl(i) G’1O!(0) !2%H8) (24S H81 065 H81 R%MB) (!00HBl (210HOI Q%Hsl UNIIWM‘1’hnbmILow lm diltkb) hllwcdntmhl ilnmln9dkt9 b&in19@ljd,, Ihunavdlitmilm(1bbonN#lblulnhhlll’ (huuavdTiwlkmlowlIr91MdIn?Rnlltuhl TL3AJ4V — — — = — — — _ — 130 11s35 : 20120 *C6 : E6 70 e 2: m 15 T!4&Iss+l—T@12025M KchmdInmnMdal w!> 025 m[I”m,ndmbondIm8mltidd TIO12 025 m(lnMnlld81,ironM@hnnuuk!,l TFO12to0’25m{W*bon9dblwlii,idd — — — @45 HOI, 12 mu: (SI ml 81M(11 (0) cd (i) u! LimltswlvmtOlhb#wdMdm I=mdadimctkn dw ViddWem’mImhOisOfti @in EkwliimmbnIcaUmh40l2Jtlm*dF Td bmm,diu)tqshmthnmm,, umimrudfildfolmr,!ddef,imal Elcqi,hn euknmkawminhuma moti wido mtiinm~ nlmnmnnmrhulmdd9fmIdunamMmkklwmOINt+nqcaiaw M4ttil1h ~tbn tmmd mnditbm Mnak+tdru!uctbm wtosinmiinim iOnmXtimf Iouww9* LiAti m fm#w t,mii mlubmml Crai IecMon, qre,,”(lu,l, imjln WknnnIu,&mll *” (1,0, on gpaifii in,imld,,u”b”m “m ,,,mgel,,” Elanp,im l”n am 10,Iind, $4qe Ieqe, nb!”” 32Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 TABkEXXITVPICALTENSILEFIEOUIREMENTSAMSSPECIFICATIONS Ted Yidd NmindAMs SumWhRCdfin StmwlhEl,m@m Are, Camomitimm%Noksi ksi% “% 49218 4936D 49mo 49240 4974 4972A 4973A 492SG 4%50 4*7D 4936A 4971A 4979A 4979 Urallowdn 090 Ti5A1353n m 115 115 Im 145 13G 1242 126 156 15370 110 110 90 13a 130 136 120 14015 10 10 10 10 20 25 25 26 26 ‘m 20 25 m 26 20 m m m25 25 20 15 ; m15 W5AI3SSI ELI l_&!5N1lSc521tM+O2S 2iSA2l,M*1V 10 10 10 10 10 10 Ti6AMv 140 t10 7T6A14VELI 7i6Al6v19 170 9 10 9 10 10 10 B 15 15 1!32170 123 1s6 170 Iw 110 110 140155tm lXI 160 15LI 96 9D Ti6#12wdz<2M0 4979 4981 4976s 4977A 4996A 49359 4936 49629 7i4AJ22Ju2r8Mo” 777A24M0 77115MC9ZC4SSII Ex[ru,iom 124 145 TimldvTi9AI6V2Sn im 10 1358 fiat,,%,,, ,nd strip m19 15 10 10 10 10 10 10 4 10 8 10 9 10 unalloyedT995 WUI1OVWm 992 Ur!dlovedm990 TL5AI25S4 Ti5Al25$n ELI m8AIlMelv w65 56 Imlm145 135 125 lEO 7s6 140 124 130 l= 130 4901E 491OF 49299 49159 49169 490s9 4912A 4913A 4* 491lC 49079 491SC 49178 4s41 4942 4943 4951C 4953 4955 49549 4996 49Z7A Ti8Mn li4AJ3McY1V li9AJ4v — TWJ4V ELI Timuwzsn T!13V1lewd Z!wx Unallovedfi995 T3AI2,5V 50 SD 9011s40 m 40 m 7515 w? YMEl115150 hal!wec!T,295: Ti5Al25Sn Ti9AllMmlv nsAl4v No termitereqbirenwnt, No,msibreauirmml$ Noten,ileruwknwnts 90 15 9015 Ti6N4vELI:: fi115MLh6Zr45Sn110 11053 m 33Downloaded from http://wwweveryspeccom MlLHDBK697A 1JUNE1974 240 r~TI 6AI4V : Figure3Temperature,F TypicalRangeinTensileYieldStrengthFoundforTi6Al4VAlloyDuetoVariation inChemistry,Structure,MillProductForm,HeatTreatment,andTestConditions Atcryogenictemperatures,titaniumalloysare”notsomuchservicelimitedbystrengthasby ductilityandtoughnesslimitationsNevertheless,severalalloysarequiteductileatlowtempens tureandTi4A14VandTi5Al25Snalloys(ELIgmdas),aswellasunalloyedtitanium,canbeu=d tothelowtemperatureofliquidhelium(453F) TheratherbroadrangeofyieldstrengthsdepictedinFigura3fortheTi6A14Valloyatarty particulartamparatureisaresultofdifferencesinmaterialchemicmy,structure,andteatconditions Majordifferen~inyieldstrength’canbeobservedforlowtohighalloycontent(highaluminum structureshavelowerstrengththanstructuresalteredbyaprecipitatephase,egeegadstrucsurea), andvariationsinthestrainrateofthetensileteat(highstrainratesresultinhighyieldstrengths) Thaaaarenottheonlyvariablescontributingtothevariationsinpropertiesfoundforagiven titaniumcomposition,buttheyaremajorvariables Thetypicaltemilepropertiesofunalloyedtitaniumandfourcommonalloysoverabroadu~ temperaturerangeamahowninFigure4Theyieldstrength,ultimataatrangthSaPamtiOnshown forTM3A14ValloyistypicalfortheotfrarmaterialsshownNotethat@rrsileductilitygenerally decraasaawithdecn?aaingtemperatureandisgenerallyhighestfordseloweststrengthmaterials Notetoo,theverylargedifferenceinyieldstrengthbetweanunalloyedtitanium(annealad)and thatshownforoneofthehighstrengthbetititaniumalloys,Ti13VllCr3Al(inthesolution treatedplusagedcondition) I 34 \Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 260 k~~“I Ultimate’ YieldTi6Al4V 230 \“ m\,jf’e’d‘’’V’’3A3A’ I\ \ /YieldTi6Al2Sn4Zr6Mo / III I 0III 4000400 80012 Temperolure,F Figure4EffectofTemperatureontheTypicalTensilePropertiesofTitaniumMaterials 35Downloaded from http://wwweveryspeccom MlLHDBK697A 1JUNE1974 ~TypicolrongeforTi6AI4ValRT: 18~ % Ti5Al~6Sn2ZrlMo02Si 16— Ti5AI25Sn —g Ii g w14— I III II 2000200400 6008001000 12( Temperature,F I a 16r T13Al8V6Cr4Zr4MoI (beta) 14— zAnnealed ‘$Q Solutiontreoledplusaged w,*— (sTA) 10IIIIII1I 100110 120130 140150 160,170 TensileYieldStrength,ksi b Figure6 TypicalV6riationinElasticModulusValuesforSeI&tedTitanium ldloysDuem k) TaatTempamture,and(b)HeatTreatmentConditionandStrengthLevel Theeffectoftemperatureonthetensilemodulusofel&ticityforselectedtitaniumalloysis showninFigure5aTheratherlargevariationinmodulusveluezthatcanbeobservedformany titaniummaterialsatanygiventemperatureisdepictedfortheTi6A14Vandbetatitaniumalloys bytheverticallinesdrawnatroomtemperatureAsisthecasefortensileyieldstrength,modulus mayvaryduetochemistry,structure,texture,heattreatment,andteatconditionsandtechniques Thevariationofmoduluswithoneofthesevariables,heattreatment(andtheresultingstrength variation),isillu~ratedinFigure5bThedatafortheTi3Al6V6Cr4Zr4Mobetaalloyreveal 36Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 10 10! Id ;4 x 2( 7s a( et 4( x 2( 1( Temperature,F \T15Al6Sn2ZrlMaO25Si P \::“’<’, #\\\\ \\“\~sRupture \ \\ \02%‘~, \ “>\;”/”“,“’% 02% Ti6AI4V(STA)02O/ \ \’ i{ TI6AI2Sn4Zr6M0(STA)\ \‘~, \\’ )Ti6Al2Sn4Zr2Ma(STA)\ “\\\ ,02“A ~6Al6Vr2Sn(STA~ I I I,\ II II III 27 29 3133 35 LoraonMillerParameter,P=T(20+lagt)x103 Figure6TypicalCreepandStressRuptureBehaviorforSelectedT!taniumAlloys thatthetrendisforhighermodulusvaluestobefoundforhigherstrengthmaterial,inthiscasefor batamicrostructurasthathavebeanmodifiedbyalphaphaseprecipitate(STAtreatments) Thecompressionpropertiesofmanymatedalsareona1to1equivalencywiththemeasured“ tensilepropertiesSeveraltitaniumalloyshaveahownhigheratrangthsincompreaaiontestshow ever,asforexample,Ti6A14V,Ti6Al2CblTaO8Mo,andTF6AI1Mo1ValloysThe Ti6AllMd1Valloyhasbeanshowntohave127ksiFcyvrmus120ksiFWinappropriatetestson materialfromasingleheatTypically,theTL6A14Val[oyhash!gher,compressionstrengththan tensilestran@asshownbelow: 37Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 @@Fty,ksi, Annealedplate,sheet,strip132126 Annealedbarandforgings126120 Heattreated(STA)plateandsheet 154145 Modulusvalues(andPoissonsratio)forTi6Al4Vhavebeenreportedas:Ec,164;Et160;G,62; (andp,031)Ontheotherhand,sometitaniumalloyshavebeenshowntobehaveoppositeto theaboveForexample,theFcyforoneheatofTb6A12Sn4Zr6Moalloywasmaesuradas157 ksiversusanFtyof170ksiThus,itwouldappearappropriatetostudyreliabledatatodetermine therelationshipbetweencompressionandtensilepropertiesforanytitaniummaterialofintereat withrespecttouseundercompressionconditions 13Typ’icalCreepandStressRuptureBehaviorTheelevatedtemperatureutilityof titaniumalloysundercreepconditionsisofgreatimportanceinsuchapplicationsasjetenginecorn pressorcomponentsTheexcellentcreeppropertiesoftiteniumalloysintheintermediatetempera turerangeofabout350to1000Fhaveenabledthemtobecomeprimematerialsforthisandother elwatedtemperatureapplicationsTheTi6A14Valloyhasbeenusedextensivelyinengineswhere creepwasanimportantconsideration,butthehistoryofthetitaniumindustryrevealsthecontinu ousdwelopmentofalloyshavingimprovedcreepstrengthsFigure6showsthreesuchmaterials comparedonthebasisofcreepstressversustheLaraonMillerparameterwheretimeandtempera ture(forelevatedtemperatureexposure)arecombinedAsshowninthisplot,theTF6Al~V2Sn alloyisnotascreepresistantas~6~14Valloywfsichinturnisnotasresistantasanyofthe alloyswhosecurves(depictingthecreepconditionsoftime,temperature,andslresstoresultin 02percentplasticstrain)plottotherightofthecurveforTi6A14VThesearetypicalcurvesfor thealloysillustrated,and,liketensileandotherproperties,variationscanoccurwithchemistry, microstructural,beettreatment,andtestingtechniquevariablesTherupturecurveahownin Figure6fortheTi5Al6Sn2ZrlMoO25Sialloyisdisplacedtotherightofthe02percentplastic creepcurvesinceobviously,longertimes,highertemperatures,orhigherstresslevelsarerequired toproducetheruptureendpointofthedeformationprcaaadefinedascreepSomeadditional alloysnotablefortheirexcellentcreepresistancearetheTIBAI1Mo1V,Ti25All1Sn5ZrlMoO2Si, andTi6Al2Snl5ZrlMoO356iO1Sicompositions 14 StabilityCharacteristicsTheelwatedtemperaturetensile,creep,andothermechanical propertiesoftitaniumalloysareimportantitemsforconsiderationregardingamaterialsservice limitationsRelatedtosuchIimitatiqnsandofequalimportanceistfre~bitityofpropatiiesduring and/orafterexposuretoserviceconditionsThestabilityofpmpartiesfortitaniumalloysisquite 9oodifexPoawesamconfinedwithinthelimitsdeterminedforgivencompositionsTftelimits generallyrelatetoconditionsthatpromoteoxidation,corrosion,stresscorrosion,metallurgical changes,andsimpleoverstraaaing,andmaybeapproachedorexceededtovariousdegreesInsome cases,thedegreeofpropertychangeafteraparticularexposuremaybesosmallthatstabilityis unquestionedInothercases,largepropertychangesmightoccursothataninatabiliWisnotin doubtIiowsvar,arbitra~amountsofpro@itychangearetypicallyassignedtodefinefibilityor inatatillityandareoftendeterminedonthebasisofwhetminimumpropertiescanbetolerated duringoraftaraserviceexposure Tensileyieldstrengthandtensileductilityarethepmpertiasfrequentlyusedasguideain evaluatingthestabilityoftitaniumalloysForexample,a50percentdacrgaseinthetensile ductilityofatitaniumalloyduetoanelwatedtemperatureaxposuremaybeusedasthearbitra~ stabilityinstabilitydemarcationpointInotherCSsea,alargechangeinyieldstrength,ineitherthe positiveornegativedirection,resultingfromanexposure,maybeusedtodefinetheslebility instabilitylimitOthershavecitedstabilityastheabilitytoretain an adequate(winetolerable 36Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 value)lowtemperaturetoughnessafterlongtimethermalexposureWhateverthestabilitycriterion mightbe,itisimportarittounderat?ndthatexposureconditionsshouldbeselectedwthattheydo notpromotepropertychangesinexcessoftolerableamountsGeneralIyspeaking,theaayerityof exposurescanbereducedbyreducingeithertime,temperature,orstress,orcombinationsofthese variables ThedataofTableXXIIshowtypicalstabilitydataforselectedalloysTensileproperties beforeandafterthermalorthermalstress(creep)expowrasWOWrelativeatabiliw(e9Ti6Al4V alloy)orinstability(egTi5Als3Sn2ZrlMoG25SialIOY)forPa~icularexPowraconditions Whilenotillustratedbythedataofthistable,itiswellknownthatsometitaniumalloysaremore stablethanotheraforagivenexposurecondition,andforparticularalloys,somematerialconditions aremorestablethanothersForexample,asahowninFigure7,theTi13V11Cr3Albetaalloyis morestablein6G0Fthermalexposureinthecoldworkedconditionthanasannaa16dSimilarly, asillustratedinFigure8,theTL5A16Sn2ZrlMoO2Wtsuperalphaalloyismorestableunder conditionswheresurfaceembrittlementcausedbyoxidationisnotaproblemThecaseshown eliminatesthesurfaceoxidationeffectsbymetalremovalbutthesamedegreeofstabilitymightbe obtainedbyeliminatingoxygenduringexposure,asforexample,duringaxposureinvacuumorby useofprotectivecoatingsThedecreaseinductilityofthesurfacemachinedsampleswithincreas ingexposuretemperature,asshowninFigure6,isundoubtedlyduetometallurgicalchangessuch asprecipitationororderingofstructuralphasesItisapparentthatthesechangesbecomemore pronouncedwithincreasingexposuretempera&eThedegreeofghangemightbereducedwitha changeinalloyprocessing,heattreatment,orperhapswithslightcompositionmodificationTISUS itmaybereadilyseenthatmanyvariablesenterastabilityinstabilityconsiderationandthat controloverthischaracteristicmaybeexercisedbyproperselectionofalloyandconditionaswell asbymatchingexposureconditionstothelimitationsofthematerial 15ToughnessParametersThereareseveralmethodsusadtotakethemeasureoftoughness oftitaniummaterialsincludingimpacttoughness,notchedandunnotchedimpacttensile,notched lowstrainratetensile,dynamictear,andstaticcrackpropagationtestsThevariousmethodsyield dataindicatingtherelativeresistancetocrackingandfractureunderoverloadconditionsNotched tensiletasting(notched/unnotchedatrerrQthratio)andimpacttestingaremethodsthathavelong beenusedtoaffordameasureoftoughnessToughmaterialshaveahighimpactenergyabsorption characteristicandarelesssensitivetonotchesasinnotchtensiletesting,Forexample,notch insensitivematerialscommonlyshowanotch/unnotchtensilestrengthrationof>1whereasnotch sensitivemater~alshaveratios<1Sensitivityofamaterialtoenvironmental(eglowtempera tures)ortometallurgical(egheattreatmentorinterstitialcontamination)conditionscanbe determinedusingnotchtounnotchtensiledatacomparisons CommonlvtheCharuvVnotchimmctteatisemtrlovedtoaffordaauickandinexpensive toughnessdete~minationSpecimensareusedeithera~roomorsubroom“ternperauraato determinetheamountofenergyabwrtmdatfractureTypicalCharpyimpactdataareahownin Figure9forunalloyedtitaniumandthreealloys,allintheannealedconditionAsmightbe expected,lowstrengthunalloyedtitaniumisverytoughtoverylowtemperaturesTheTi5Al25Sn alphaalloyandtheTi~A14ValphabetaalloyalsoamquitetoughwhereastheTi8Mnalloy,being arichlybetastabilizedalph~betaalloy,doasnotshowexceptionaltoughnessatlowtemperatures 1SSductiletobrittletransitiontemperatureissomewhathigherthanfortheotheralloysshown Generally,titaniumalloysthatarerichlybetaatabilizad,havemoderatelyhighductiletobrittle transitiontemperaturesandarenotnotedforgoodtoughnesscharacteristicsatlowtemperature Aswithmanyotherpropertiesoftitanium,toughnessishighlydependentuponalarge numberofvariableswhichincludealloychemistry,structuretexture,andtastingconditions 39Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXXIITYPICALTENSILEPROPERTYSTABILITYOFSELECTEDALLOYSAFTER ELEVATEDTEMPERATUREEXPOSURE RTTensileProperties ExposureConditionsUltimateYieldRed Time,Temp Stress,StrengthStrength,ElongationinArea, hwnFkdksiksi% % Ti5Al25Sn Noexposuredata138132 500700 None138 131 ~6A14V(CaseA,Sheetannealed2hoursat1300FI Noexposuredata145 137 7mo550,None143 135 TM3AI4V(CaseB,BarAnnealed15hoursat1280F] Noexposuredata 100750 100750 No exposure data 3000825 1501000 Noexposuredata 150 800 Noaxposuredata 600 800 Noexposuredate 2000 6s3 Noexposuredata 1811000 376 1000 50 70 48 25 45 ’84 70 35 45123 133 133 Ti6Al2SnAlZr2M0 153 158 146 Ti6Al2Sm4Zr6Mo 188 1B5 TL6M08V2F*3AI 149‘“ 156 Ti115Mo6Zr45Sn 147 148 Ti5Al6Sm2ZrlMOO26Si 146,, 144 155 117“,,7+ I22 MO 145 136 174 164 139 144 141 146 131 134 ’1478 10 13 14 14 14 11 20 14 15 10 7 14 16 25 24 10 5 240 40 36 41 43 40 37 41 23 42 35 21 32 29 66 70 23 9 5 40Downloaded from http://wwweveryspeccom 1“ I MlLHDBK697A 1JUNE1974 ~13vIlCr3Al ~ 220— :~ / = /\\ Annealedpluscold = g 5 w10— IIII 00IIIII 200400aoo800 600FExposureTime,hours Figure7EffectofThermalExposureonthePomExposureTensileDuctilityofaBeta TkaniumAlloyinTVoConditions A Ti5Al6Sn 2ZrlMoO25Si E 8 ( !re%’ 0 em 900‘IOQO 1000HourExposureTernperolure, F Figure8EffectofCreepExposureonthePostExposureTensileDuctilityofaSuper– AlphaTitaniumAlloywithandwithouttheExposedandOxidizedSurface LayerRemoved 41Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 Y“// @Ti6Al4V/ / “~ /’” ~/ 0’ /Ti8Mn # I 4 I III 4003002001000100 Tmpera!ure,F Figure9EffectoftemperatureontheCharpyVNotchToughnessofUnalloyed Titanium(VariousGrades)andThreeAlloysintheAnnealedCondition /, notbeenpossibletocontrolallthevariablestoobtainentirelyconsistentresults“tithtimeofthe moreaophkticatadstaticcrackpropagationtypefracturetoughnemteatsForexample,aIafge numberofspecimenstakenfmmnumerousheatsofannealedbars,plates,andforgingsof TM3A14Valloygavethefractasretoughnesstensileyieldstrength’dataoffigure10Compact tensionandfourpointbqdingtestswereusedingenaretingthesedataThelargespreadintough nessatasinglestrengthlevelandtherangeofazrangthIawelsmeasuredfortheannealedrendition arebothpossibleasaresultoftheaforementionedmaterialvariableswfsichmayexisawithinthe mnfinasofspecificationlimitationsGenerally,lowalloychemistrytend~toresultinlowatrength hightoughnesscombinations,acicularmicrostructuraatendtogivethesameresult,andanisotropic texturedmaterialsyieldresultsdirectlyrelatedtoteatspecimenorientationTheoverriding generalizationthathasbeenobservedmostconsistentlyisthattoughnesstendstobeinversely relatedtostrengthasillustratedbythescatterbandtrendlinesofFigure10 42Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 IIRangeoftoughness atasinglestrenqth \ level 201 I I I I 11012013a 140150 TensileYieldStrength,ksi FigurelOFractureTaughneasTensileYieldStrengthRelationship ObservedfarAnnealadTL6AI4VBars,Plates,andForgings (withinSpecificationsLimitations) ThetypicalfracturetoughnestensileyieldstrengthtrendIinesforseveralalIOYSareSJSOWI’Sin Figurell~edataamforannealdTl5Al2~n,Tl8AllMolV,and~5Al%Sn2ZrlMoO23, alloysandzdutionheattreatedPIUSaged(STA)Ti6Al2Sn4Zr6Mo,Ti6AlSV2Sn,andthebeta alloysBotiannmldandSTAmnditionsamincluddintietrendlinesho~fortie~%Al4V alloyTheexcellentfracturatoughnesscharacteriaticeoftheannealedmaterials’atlawtomoder awlyhighmren@lwelsareafeawreoftitaniumalloysWnerallyThetoughnessadvantageofthe betaallaysintherangeofhighstrengthscommonlyobtainedintheSTAconditionisnotafeature ofallbetatitaniumalloys(theTi13VllCr3AlalloyhaslowfracturetoughnessintheSTA condition),butisafeatureforsomeofthenewerbetaallaysincludingtheindicatedcompositions andtheTi3Al6V%Cr4M04ZralloyThetrendfordecreasingtoughnesswithincreasingstrength isag?inapparentinthedataofFigure11 16 FatigueCharacteriaticaThefatiguepropertiesoftitaniumanditaalloys,whilebeing afthemastimportanceinmanyapplications,aresCldorhifaverdescr,ibedinspecifications Possiblythisi~,becausetherearesomanyvariablesassociatedwiththefatiguePefiormanceOfa materialthatitisdifficulttopredictthebehaviorexceptwithinratherbroadlimitsThematerial variablesaffwtingfatigueperformanceincludechemistW,microstructure,andtexture,andof 43Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 _Ti5Al25!jnELI \ Ti6&l2Sn4Zr6t!Q I I I II PO 140 160 180 m Tensile Yieldstren~th,ksi ,,, Figure11 FractureToughnessTensileYieldStrengthTrendLinesforSelectedTiteniumAlloys intheAnnealedandHeatTreated(STA)Conditions 120— tim— ‘Ultrasonicmachined \ Figure12,80 1\$&& “0’‘i’’”Chsmmilledandarmeelsd \~ L 115AI25Sn 20 [R=I] ““1I I Lifetima,sysles EffectofSurfaceFinishontheRoomTemperatureRotatingBeamFatigueBehavior ofTi5Al25SnAlloy 44Downloaded from http://wwweveryspeccom ! MILHDBK697A 1JUNE1974 14C I2C Ioc = 8( % g 03 et 4( 2( ( \ Ti5Al25Sn \;Ti13vllCr3Al[R=o1] ——__, ——— TI5A!~5Sn(notched,Kt~4)[R=I] Lifetime,cycles Figure13TypicalRoomTemperatureFatigueCharacteristicsofSelectedTitaniumAlloys course,thesearecontrolledduringthehakeupandprocessingoftitaniumalloysInadditionto thematerialfactors,fatigueperformanceisdeterminedbysurfaceconditionsofthematerial, environmentalfactors,andofcoursespecimengeometryandthetestvariablesToaffordsome ideaoftheinfluencethesefactorsbringtobear,therangeinfatiguestrengthobservedfor Ti5Al25SnalloyaurfecefinishedinavarietyofwaysisdepictedinFigure12,Shoppeeningor glassbeadpaeningtooptimumsurfaceconditionscanbeusedtoalleviatethebadeffectsinduced bysomeofthesurfaceconditionsillustrated ThetypicalfatigueLwhaviorobservedintensiontensionandrotatingbeamteatsforselected titaniumelloysisshowninFigure13Someoftheatres@ifetimecyclecuweaarecomparable (&mekindoftaste)andindicaterelationshipsbetween alloys,notchunnotch(smooth)t geometries, andproductformsForexample,thesuperiorfatiguestrengthofTi6Al6V2Snand Ti6A14ValloysovertheTi13V11Cr3Albetealloyisindicated’Notetherangedepictedfor varkwsmillproductformsandannealedmicrostructureofTi%A14ValloyTheeffectofa moderatelysharpnotchonreducingthefatiguestrength”ofTi5Al25SnillustratesgeneralIythe degradationipstrengthinducedbystressrisersThelargedifferencebetweenthefatiguestrength ofwroughtformsandcastformsofTF6AI4Valloy,bothinthesmoothcondition,isreadily apparentThenotchedgeometryforbothwroughtandcastformsofTi6Al4Valloyresultin; 45Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 I ‘“ I20 100 So So 40 01 20 ~ , ‘\Powderpressedondforged II(notched, Kt= 4)[R=o1] oI ,“4 106108,“? Lifetime,cycles e14RangesinFatigueBehaviorObservedforVariousFormsofTI6AI4VAlloy ~ntiallvthe~memren~rangeasshownbythecurvesofFigure14Inthisfigure,thenotched andsmoothfatiguestren~hrangesforalloyproducedbypowdermetallurgytechniquesarealso shownTherangaforthenotched,conditionisbasicallycomparablewiththarangesfornotched woughtandnotchedcastmateriaks(thapowderproductapacimenshaveaeomewltatsharpernotch toresultinslightlylovmrfatiguestrength)TherangeforsmoothspecimensproducedbyPotier metallurgyissomewhatinferiortotherangeforwoughtproductsalthoughsuperiortotherange forcastTi~A14ValloyItshouldbeunderstoodthatthedatesummarizedarethoseforapowder metallurgyproductthathasbeenadditionallyforgadtofurthercknsifyandoPtimizethemicm atructuraPowdermetallurgyproductsthatarenotdensifiedbyforging(orothermetalworking techniques)donothaveasgoodfatiguestrengthastheconsolidatedproducts 17ComparisonofPropertiesofVariousProductsTheroomtemperaturetensile propertiesandthe40FCharpyimpactpmpertieaofeel&tedtitaniumalloysaregiveninTable XXIIITypicaldatearegivenforwrought,cast,andpowdermetallurgybarsAsmightbe expected,thepropertiesofthewroughtmaterialaresuperiortothoseofcastorpowderformsin anyofthealloyscomparedUnalloyedtitaniumproductpreparedbyanyoneofthetechniques hasquitegoodpropertiesThedevelopmentofimprovedcastandpowdermetallurgyproducsand propertiescontinues,wthattheinferiorityofsuchmaterialscomparedwithwroughtproduct becomeslesspronouncedInmanycases,thecostadvantagesavailablewithcastorpowder 46Downloaded from http://wwweveryspeccom 1, a < “:s~111OUlllllmaI Ill11111I MILHDBK697A 1JUNE1974 47Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXXIV COMPARISONOFROOMTEMPERATUREPROPERTIESREPORTEOFORSEVERAL FORMSOP~l15Mo6Zr45SnALLOYASSOLUTIONTREATEDPLUSAGED (8HourAgingat95oF] UltimateTensileTensileFracture107–Cycle TensileYieldElongsToughnsss Fatigue Product Thickness,Strength,Strength,tion Form ‘%Strength, inchasksiksi %ks”#ksi Forging 40 182 172 4 <1061—— 193185 5—— Plate 2,0186182 4 0557— ~:r’;~~i:”’z140 Sheet 0063’ 120 192 3—— Foil )002/227213 2 —— Extrusion 027186169 — 48 — Tubing 0120(wall) 0050 (wall)185 180’176 1698 6 — ——— —— Bar 1188 0500 0196201 172 170 210 180 1658 10 18 — — — 160 — Wire 0063195 15 — 150 Cssting<10 <10173 182160 1647 7 — —— productsareconsiderable=thatpotentialapplicationsshouldbecarefullyexam@dtodetermine iftheslightlylowerpropertiesoftheseproductsmightbeprofitablyutilized ThedatsofTableXXIVarefornumerouswroughtandcastformsoftheTi115Mo6Zr4&Sn (BetsII1)elloyinthesolutiontreatedandagedconditionTensil&fracturetwghness,andfatigue dataaregivenPmpertieealsoatagivenforvariousproductthickn~wttareavailableWhilethe generaluniformityofpropertiesforvarioussectionsizesofanyofthewroughtproductsisapparent, thetotalrangeinpropertiesforallwroughtproductsisquiteIargsasshowbelow 180227ksiUTS,169213ksiYS,218%EL,, TherangeisbroadenadifthadatsforthecastproductsareincludedArangeinpropertiesfor variousproductformsisquiteacommonoccurenceformetalsbutistypicallythecasefortitanium alloysThus,theusaroftitaniummaterialsshouldbefullyawareofthevariationsinpropertiesthat canpertainbetweenproductformsandexaminetheavailabledatacarefullypriortoamaterial commitment 48Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXXVDENSITYANDSTRENGTH/DENSITyRATIOSTYPICALLYAVAILABLEIN TITANIUMALLOYS TypisdTypicalY!eld &mealedlSTAStrengtheto NominalComposition,Densi YYieldStnmeths, Oensirv Ratios, W%Iblin ksiinchx106 unallowdT(MediumSOW@)016341646ol—03671— lio15too26ffl 0163 461—02621— Ti2cuU16590/1150545/0697 li5Al26SnlelsoELI)0161‘—1171—07261— TI225AJ1lSm5Zr1Meo25Si0174—1135—/0776 7i5AI6Sw2~lMo0,25Si 101631351—08281— TI6AI2SIS16ZrlMoO356W1Si01621371—0S46/— li6Al2C&lTsD8M0/01621201—o7411— 7i8AllM&lV0159i421—o693/ lT6Mn01711251—o731/— 1I3AJ25V016265/1100525/0679 TwtA13MQ7V0163120/1670736/1024 135AI2Sn2Zr4M04Cr0166 li6Ab4V{alsoELI)/160–/0952 0161136/155060710963 l_I6Al6V2Sn0164154)/1800915/1096 Ti6A12SntZr2M001641351—08231– Ti6Al2SrwlZr6M001691651—09761 Ti6Al2Sw2Zr2M*2Cr4290162—1160–/0966 Ti7AllMo 01621,50/1750926/1030 TilAl6V5Fe016616512150982/1260 lW2AJllv2snl1Zr0174/160 II034 113Al6V6Cr4M04~ o174125/170 071610977 11115Mo6Zr45Sn 0163115/1650628/1011 7i8M*8V2Fe3Al 0175125/1600714/1026 Ti13V11CJ3AI 0175130/1750743/1000 I ThedensityandstrengthtodensityratiodatapresentedinTableXXVrepresentanadditional considerationwhencomparingthepropertiesoftiteniumalloysWhiledensitiesforindividual materialscanvarydightly,forexamplewithCompmitionaldHferancasfromheattoheat,the valuastabulatedarethegenerallyacceptedvaluesThetensileyialdstrengthvaluesgiven(annealed andsolutiontreatedplusagedvalues)arerepresentativeforthematerialsandconditionsahown andcspreviouslydescribad,canvarymarkedlyduetoam)mberoffactor%Thus,thestrength/ densityratiosgiveninTableXXVaremerelyrepresentativeNevertheless,thestrength/density ratioaffordsausefulparameterforcomparisonPurposesandinsuchtermsdensityshouldalways beoneofthefactorsconsideredinselectingatitaniummaterialforanapplication 49Downloaded from http://wwweveryspeccom MiLHOBK697A I 1 JUNE1974 SECTION Ill METALLURGYANDPROCESSING I MetallurgicalInformation 18TitaniumProductionVariablesTheproductionofthebasictitaniumspongemetal Ifromitsprimaryore(rutile)andthebasicprocessingofspongetofinishedmillproductsandcast ingswasdescribedearlierinSection1,Paragraph3Whilethepreviousdescriptiondescribedthe productionofingotandsubsequentproductsintermsoftheformsanddimensionsavailable,itis aPPmPriateatthisP6inttodescrib@inmoredetailthealloysavailableandthemetallurgical I factorsofimportartea I ThealloysoftitaniumwfricharenowcommonlyavailabtetousersarelistedinTableIIand additionaltablesThecompositionslistedarenominalcompositionsandtheactualcompositions canvaryovertherangesorbelowthemaximum’amountaofcomponentsgiveninspecifications Sincetitaniumproducersaresubjecttotheexternalpressuresofnumerouscompanyandpublic specifications,theyfinditfrequentlynecessarytomakeseveralgradesofsomealloystomeetthe manyrequin?mentsofusersincludingcostrequirementsThus,formanyofthenominalcomposi tions,severalgradesofthealloyareavailable,andinatIe&tonecase,thatfortheTi6Al4Valloy, morethanadozendifferentgradescanbefound I Therearetwoprimaryfactorscontrollinggrades:ingotqualityandalloychemistryIngot qualityhastodowithsuchvariablesasinputrawmtiterialandadditionalvariablesasd=ribed below l l I l I l I l I l Inputrawmaterial(virginspongemetalversuswap) Kindsofscrap(laboratorycontrolrevert,massive,~rap, turnings,etc) Ratioofscraptovirginmetal[inmixedmaterialelectrodes) Methodsofmakingelectrodes(pressedvirginmetalversus weldedecrapweldingofmmponentsinoroutofvacuum) , Meltingcontrols(degreeofvacuum,abnormalitiesinmemelt cycleifany,doubleortriplemeltingofingots) D&eeofingottesting(macrcandmicrometallographicand““ chenricdanalysesfromprescribedlocations), Surprisingly,thereareonlyafewclassificationsforingotqualityresultingfromallthesevariables Thoseofinteresttothisdescriptionare:(1)PremiumGrade,and(2)StandardGradeAsmightbe expected,bothreliabilityandcostarehigherwiththepremiumgradeofingotTheingotgradesin I 50Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 turnmaybesubclassifiedingradeaccordingtoalloychemistry I 1’ AlloychemistryisbasictogradecontrolInthecaseoftheTI6AI4Valloywherenumerous gradesareavailable,thevariationofoxygencontentisusedastheprimarycontrolForexample, theELI(forextralowinterstitialccmtant}gradeofTi@+14vallwh=beenmentionedELI gradesofalloyusuallycontainlassthan013percentoxygen)Othergradmighthavemom oxygen(egastandardgcadeorahighoxygengrade)Withintheprimarygradascontrolledby , interstitialcontent,therearesub@adeatilchdifferfromoneanotherduetothecontrolofthe I aluminum,vanadium,andironcontentsForexample,Ti6Al4Valloywithhighaluminum content(withinspecificationrange)mightbepreparedforthicksectionproductorproducttobe solutiontreatadplusagadtoahighstrengthlevelThusbysimplymultiplyingthevariablesofingot qualityandalloychemistry,theavailabilityofalargenumberofalloygradasforagivencomposi tionisapparentThegradeofanalloyisimportantwithrespecttoparticularpropartiesand I propertycombinationsandthesearefurthercontrolledbythemillprocessingandproductformas wallasbyheattreatmentp&aduraa,Itisthereforerecommended,duetotheforegoing,that usersoftitaniumproductsshouldcommunicatewiththeproducerstoinsurethattheproduct suppliedwillmeattheintendadrequirements 19EffectsofAlloyingElements–Metellur@andMicrostructure I a GeneralAnalloyingelementaddadtotitaniumhasimportanteffectsuponthephvsi calandmechanicalcharacteristicsofthismetalEachelementthatmightbecombinedwith titaniumeitherintentionallyorunintentionally,andineithersmallorlargeamounts,resultsin I somedegreeofstrengtheningandinsomechangeinthebasiccrystalstructure{nthissense,even thecommercialunalloyedgradesoftitaniumarealloys,sinceeachofthegradascontainvarious quantitiesofthainterstitialelements(carbon,oxygen,nitrogen,andhydrogen)andironPlusother metallicelementsinmeasurableamwntaTheironandothermetallicadditionsresultinthesolid I solutionstrengtheningoftitaniumInaddition,ironandselectedothermetallicscancombinewith titaniumtoformintermetalliccompoundsunderthermalandsaturationconditionswhensolid I solutionconditionsareexceeded Anotherimportantalloyingeffectapartfromthestrengtheningeffectofadditionstotitanium, isthechangeinducedinthapolymorphoustransformationtemperatureofthecrystalstructureThe transformationtemperaturefmmthehexagonalclos+packedform(hcporalphaphase)tothebodr centeretkubicformlbccorbewphasa)inpuretitanium,occursatabout1625F(885C)The effectofalloyingelementsontitaniumistoraiseorlowerthetransformationtemperaturedepand entuponthekindofalloyingelementsinsolutionTheamountoftheelementaffectsthedegree ofchangeme interstitialsolubleelements,carbon,oxygen,andnitrogen,andthemetalalUminUm, areexamplesofelementsthatraisethehcptobcctransformationtemperature‘1ron,vanadium, chromium,molybdenum,andmanganese,areexamplesofelementsthatmarkedlylowerthe transformationtemperatureTinandzirconiumtendtolowerthetransformationtemperature onlyslightly(eg tinlowersthehcptobcctranaustemperature1F/l%)andsuchelementsare oftenraferr@toasneutralstabilizers I ,~eabilityofelementstodistortthecrystalstructureoftitaniumtocausestrengtheningor tocausechangesinthepolymorphousbehaviorvariesfromelementtoelementandisthebasisof titrmiumalloymetallurgyMetallurgistsarecontinuallyexperimentingwithalloyingelementsto obtainimprovedritanitimalloyswithconsistentandpredictablepropertiesElementsthatraise thehcptxctransus(alphastabilizers),orthosethatlowerthetransus”(betastabilizers),and combinationsofsuchelementshavebeenusedtodwelopalpha,beta,andalphabetaalloys– socalledbecausetheirmicrostructurearepredominantlyofthesephasesatroomtemperature 51Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 b AlphaAlloysThecommercialunalloy4gradesoftitaniumaretechnicallyalphaalloys asisthealloyoftitaniumcontainingsmallamountsofpalladiumaddedtoimprovecorrosion resistanceTheTi5Al25Snalloyisthebestexampleofahighstrengthalphaalloythathascom mercialstatusTheamountoftinincludedinthemak&upofW5Al25Sn,aswellasthesmall amountsofironandotherbeWstabilizemthatmightbeprewntasimpurities,isinsufficientto= overridethedominanteffwtofthealuminumalphamobilizeralloyedatthe5percentlevelThis alloymaybecharacterizedas havingahcpalphamicrostructureatambienttemperatureandof coumaduetothealloyingadditions,moderatelyhighstrengthcomparedtounalloyedtitanium Twonotablefeaturesofalphaalloysare:agoodretentionofstrengthatelevatedtemperature underlowstrainrateconditions,andgoodweldabilityAlso,alphaalloysshowlittlestrainrate sensitivityTherearenumerousapplicationswheretheseattributesareofgreatimportanceThe highstrangthatelevatedtemperaturefeatureofthemorehighlyaluminumalloyedalphacompo sitionscanbeaomewfratdisadvantageousfromtheviewpointofamorelimitedfabricebilitycom paredwithmixedtwophasealphabetaalIoysandbetacompositionsThisdifficultycanbe allwiatedbyadditionsofneutralatabilizersandsmallamountsofbetastabilizerstoafford extremelyusefulcompositions cNearAlphaAlloysAapreviouslymentioned,thecommercialalphatitaniumalloys containsomebetastabilizingelementsalthoughthesearefrequentlyinalphasolublequantities Themicrostmcturasofsuchmaterialsmayormaynotincludesmallobservablequantitiesofthe betaphaseAdditionalbutstillsmallquantitiesofbataatabilizemtoanalphastabilizedbaaaresult inthepresenceoflargerquantitiesofthebetaphaseinthepredominantalphasmuctureSuch additionsnotonlypromoteasmallamountofbetaphaseretentionbutalterthemechanical characteristicsofthealloyaswellDependingupontheamountandkindofbetastabilizersused, strength,stability,andfabricabilitymaybeimprovedincomparisonwithallalphacompositions ofthesamealphastabilizedbaseAlphaalloysmodifiedwithrelativelysmallamountsofbeta stabilizersarefrequentlyreferredtoasnearalphaalloys Asmallbutcriticalamountofanintermetallicqmpoundformingadditionto molybdenum+ontainingnearalphaalloyshasbeenfoundtohaveasynergisticeffectoncreep strengthBoron,germanium,bismuth,andsiliconbehavesimilarlyesthecompoundforming elementinsuchalloysbutthelatterhasbeenusedmoatextensivelyinnearalphacompositions (alsocalledsuperalphaalloys)SinceanintermetelliccompoundsuchasTi5Si3,complex intemSetalliCS,canforminthesematerialsandcanbeobservedinthemicrostructureasadia parsedprecipitatephase,thetermalphadisperaoidalloyisalsosometimesappliedAllo~softhis classarealmostexclusiveyforaerviceingasturbineengineahavingestheirprincipalattribute significantlyhighercreepstrengthti”ananallalphaoranearalphaalloyofthesame“basecornpo aitionThealloysofthisclassalsohavebeendwalopadtomaintainotherusefulfeatumaincluding highshorttimeelevatedtemperaturestrength,adequataductility,andstabilityduringandafter tharmalexcursions TheTi1to2NiandT12CUalloysarethecommercialrepr&entativeaofyetanothertypeof alphadispemidcompositionTheintermetelliccompoundformingelements,nickelandcopper, areusedinatitaniumbasethatisnotfortifiedwithadditionsofaluminum,tin,orzirconiumThe titaniumnickelalloyismadeexclusivelyforitagoodcormai,onmsiatanct%Thetitaniumcopper alloyismadeforusesrequiringsheformabilityandweldabilhyofunalloyedtitaniummmbinad withanimpmvedelevatedtemperaturestrengthrequirementTheintermetalliccompounds, Ti2NiandTi2Cu,areusuallyobservedesafineprecipitatephaserandomlydispeinanalpha microstructure~sisgenerallytheformofoccurrenceoftheintermetelliccompoundsthatcan precipitateundercertainthermalconditionswhenthewcalledbetaeutectoidstabilizersare 52Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 alloyedwithtitaniumElementsofthistypeincludebismuth,silicon,iron,manganese,and chromium,aswellasnickelandcopperThealloyingcharacteristicsoftheseelementsintitanium istheloweringofthehc@zcctransformationtemperature(calledthebatatranawtemperature), limitedvolubilityinthealphaphase,andpropensitytoformintermetalIiccompounds dAlphaBetaAlloysAsmentionedpreviously,onetypeofbetastabilizeriscalledbeta eutectoidstabilizersbecausetheyhaveeutactoidbehaviorwfsenalloyedwithtitaniumandare compoundfomtersAnothertypeofbetastabilizersiscalledbateieomorphousstabilizersbecause theyaresolubleinbetatitaniumoverthefullrangeofthealloysystemElementsofthistypedo notformcompoundsandincludemolybdenum,vanadium,columbium,andtantalumAlphahem titaniumalloysresultwhensufficientbetastabilizersofeithertypeareaddedtoabasecomposition tocausequantitiesofthebetaphasetopemisttoroomtemperatureThebasecompositionmay”or maynotcontainalphastabilizersalthoughthecommercialalphabetatitaniumalloysusuallyde anexceptionistheTi6MncompositionAtwophasealphaplusbetamicrostructureischaracter istic,althoughalargevariationintheappearanceofthestructut%,duetovariousdeformationand thermalprmzsingtechniques,canmaketheinterpretationofmicroatructuresdifficult Themechanicalcharacteristicsofalphabetatitaniumalloysarehighlydependentuponthe combinationofalphastabilizersandbetastabilizersusedintheirmakeupaswellasupon processinghistoryAluminumisfrequentlyusedasthealphastabilizerwhichamongother featurescontributestothestrengthofthealloyoverthefullservicetemperaturerangeCommer cialalphabetaalloysusuallycontainconsiderablequantitiesofthebetaiaomorphouselements, molybdenumorvanadium,whichimpartstabilityasyellasstrengthathightemperaturesThe additionofbetaeutactoidatabilizemalsoimpartsatren~halthoughtheirusein largequantitiescan resultininstability duetotheinappropriateprecipitationofcompound In generalterms,theamountofalloyadditioninalphabetaalloysisrelatabletostrength levelForexample,theTF6AI4ValloyisconsiderablystrongerthantheTL3AI25Valloy Similarly,alphabetaalloyswithincreasingamountsofbetastabilizingadditionareinherently strongerinshorttimetensiletastingandduetothelargerbetacontent,areheattreatabletohigher strengthsForexample,theshorttimestrengthandtheheattreatabilityoftheTi6Al6V2Sn alloyisgreaterthanTi6Al4VAlso,Ti6Al2Sn4Zr6Moisstrongerandmoreresponsivetoheat treatmentthanTi6Al2Sn4Zr2Mo(Thelatteralloyisalsofrequentlyconsideredanearalpha alloyandservestoshowtherelationfi!pbetweennearalphasand~aklybstaktabllizedalphabeta alloys)However,ifthelowstrainrateperformancesofthesematerialsarecompared,asincreep forexample,theTi6Al4ValloyisshowntobebetterthanTi6Al%V2Snandthe Ti6Al2Srs4Zr2MooutperformsTi6Al2Sn4Zr6Mo Inadditiontothestrengthandheattreatabilityfeaturescharacteristicofalphabetaalloys, thisclascanbecharacterizedashavinggoodfabrica~lity,goodductilityandstabilitycommen suratewithpreferredatrangthlevelsandexposureconditions,andmarginal weldabilityexcept when thebeta~bilizinocontentislowForexamoleTi3Al25VTi6A14VandTi6Al2Sn4Zr2Mo alloysareweldabl~wlseraasweldabilityisnotr&ommend&~ortheTi6Al6V2Sn, TL6A12Sn4Zr6Mo,Ti4A13MolV,andTi6MnalloysTheheattreatmentofalphabetaalloys isdiscussedfurtherinasubsequentsection eBetaAlloysIncreasingquantitiesofthebetastabilizingelementsaddedtoatitanium basehavebeendescribaidtoresultinincreasingamountsofthebetaphaseinthemicrostructure andtoaffordalloysoftheclasses:alpha(tracetosmallamountsofbetastabilizers),nearalpha (smallamountsofbeta),andalphabeta(weaklybetastabilizedtostronglybetastabilized compositions)Largeramountsofbetastabilizingadditionsresultinupto100percentbetaphase 53Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 retentiontoroomtemperatureandthealloyclassbetaThecommercialbetatitaniumalloysare socalledmetastablebetacompositionssincethepartialtransformationofthebetaphasetoalpha phase,toanintermediatephase(omega),ortointermetalIiccompoundphase,canoccurduring thermalexposurelnfact,theprecipitationofthmphasaduringtheheattreatmentofthebetes isthereactionreliedupon toreadtinthehighstrengthscharacteristicofmetastablebetaalloyi Metastablebetatitaniumallcyshavebeenusadinairframes(egTi13VllCr2Alsheetand forgingsintheSR71)andforsuchspwialWitemsasspringsandfaSenemTiteniumalloyswith largeramountsofbetastabilizerstoresultinstablebetamicrostructurasarepossiblebutarenot currentlyutilizedascommercialmaterials In additiontotheheattreatedhighstrengthcharacteristicofbetaalloys,theexcellent ductiliWofthenonheattreat@betiphawisanotablefeamreThehighlyductilebetaphasehas greatcoldwtiabilitytiichpemitsexcellentroomtemperatureformaMliWThealloysalsocen beformedatelevatedtemperatureswheretheirdeformationresistanceisverylowwfsentheatrain rateislowbuthighwfrenstrainrataishighInshort,thebataalloysaraatrainratesensitiveThus, aswithrichlybetastabilizedalphabetaalloys,”ahorttimeelevatedtemperaturestrengthsofbetas arehigh,wfrereascreepstrengthsarelowcomparedwithalphaornearalphaalloys ~eweldatiliWof&mtitiniumalloysisnotconsiderdoumndingThebetesarequite weldablefromtheannealedconditionandareveWductileaswldedHowever,theannealadcon ditionisalowstrengthconditionandattemptstostrengthenvmldedmaterialbyheattreatment usuallyrasultinverylowductilityofweldmentaCombinationsofpostwaldhaettraatmentand deformation,ifamenabletotheweldedpert,canimprovetheweldductilityalthoughitisnota commonlyusadprccechsre f SynopsisThereambasimllywoclasifiationsoftiealloyingelemen*thatmight recombinedwidrtitenium:(I)alphaatebilizingadditions,and(2)betaatebilizingadditionsThe alphastabilizingelementswhichpromotethealphaphaseareprincipallyrepresentedbyaluminum andbythein@tiitiallysolubleelmenS,cabon,oxygen,andnitrogenThebetaatebilizing elementswhichpromoteretentionofthebatapha%,arerepresentadbythesocelledbeta iwmorphouselementssuchasmolybdenumandvanadiumbythebataautactoidstabilizers(inter metalliccompoundfonmera)suchesiron,mangenaw,chromium,andsiliron,andthesocalled neutralstabilizers,tinandzirconiumthattendtolowerthebarntrenaustemperatureonlyslightly Singlyorinanycombination,theseadditionstendtostrengthentitanium,topromoteother mechanical,physical,andmetallurgicalcharacteristics,aawellestocontrolbasicmicrostnsctures TheseaffectsaresummarizedinFigure15wherethehighlyschematizedmicroatructurasofthe variousalloyclassesareapproximatelycorrelatedwithexemplarycommercialcompositionsand trendlinesofmajorsignificance“” 20EffectsofProcessingandHaatTreatmentVariablesMillproductsofmanytvpeaare producedbythehotfabricationofingotaorcastprafomssusingawidevarietyofreduction schedulesandmethodsThevariationsinthereductionachedul~andassociatedprocessing variables(egcoolingratafmmprocessingtemperaturesandposfabricationhaattreatment)ra sultinawidevarietyofmicroatmcturelconditionswhich,a!+mightbeexpected,arecharacterized bydifferentmechanicalpropertiesProcessingvariablesareinterrelatedwithalloycomposition variablesindeterminingmicroatructumandpropertydifferences Toillustratethetypicalfabricationschedulesfortitaniumalloysintermsofthermalhistory andtoshowtheircorrelationwithresultingmicroatnscturasandproperties,thecsseforthe Ti6Al4ValloyisdescribedItdsouldbeunderstoodthatanidealizedandhighlysimplifiedcase 54Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 Trends MicrostructureComposition I 55Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 ispresentedsinceitisimpossibleinashortspacetodepictallthevariablesandvariationswhich actuallyoccurAlso,thealloyvariable shouldbeapparenttheTL6AI4Valloywouldbe processeddifferentlyandbehinfedifferentlythandissimilarcompositions ThecasefortheTL6AI4ValloyisshownschematicallyinFigure16Thelinedrawingof~his figureisapartialphasediagramoftheTi6AlVsystemwfsereinthepointsontheverticalthrough the4percentvanadiumcompositionrepresentsignificanttemperaturesofprocessingandheat treatmentRepresentativemicrostructurearedepictedfromselectedtemperatures NormalbreakdownfabricationoperationsforTL6AI4Valloyusuallyareperformedabovethe betatransustemperatures(egpointAinFigure16)whereasfinishingfabricationtemperatures canbehighinthealphabetafield(pointB)toIOWinthealphabe~field(pointC)subsequent millannealing(andsometimesfabrication)maybecarriedoutatstilllowertemperatures(point D)SolutionheattreatmentofTi6A14/alloymaybeaccomplishedinthealphabetafield (rangingbetwsenpointsBandC)w+rereassubsequenta@ngisdoneatamuchlowertemperature (pointE)Themicrostructurasahownforvarioustemperaturesandcoolingratesofprocessingare generalizedandinpracticecanvaryconsiderablefromtliosedepicted(egvariationwithdegreeOf deformationattheindicatedtemperatureand/orpriorprocessinghistory)Nevertheless,the illustrationsshowthemajordifferencesinstructureresultingfrombetaprocessingverausalphabeta pro”ngversusalphabetaprocessingandsuchdifferencesinthealphatobetaphaseratiothat mightbeobtainadbyfabricationatdifferenttemperatureswthinthealphabetafieldProcessing atincreasingtemperatureswithinthealphabetafieldgivesri~todecreasingamountsofprima~ equiaxadalphainthemicrostrsscturesExtensiveprocessingmoderatelylowinthealphabetafield followedbysimpleannealingatstilllowertemperaturesresultsinanequiexedalphaplusgrain boundarybetamicrostructureasillustratedThealphaphaseisthecontinuousphaseunderthese conditionsHeattreatmentsatstilllowertemparatu~,thatisatagingoroveragingtemperatures, raadtinmicrostmcturaltransformationsthatmayvaryinextentwiththethermalexposurecondi tionsandaresometimesdifficulttodetectvisuallyProfoundchangesofamicroscopicandsub microscopicnaturedonotoccurhowever,thatcanbeobservedwithmagnification,aridgenerally consistofprecipitatephasesemanatingfmmpreexistingphaseaClassically,alphaphaseprecipi tatesfromthemetasteblebetaphase Theacicularityofthetransformedbetamicrostructureisanimportantfeatureofmany titaniumalloysandprocessingproceduresThe‘plateletsorneedlesofthealphaphaseoccuras thebetaphasetransformstoalphawiththeloweringoftemperatureandtheresultingacicularized structuremayhavequitedifferentpropertiesthanequiaxedtiructureaNoteinFigure16that instructuresemanatingfromhighinthealphabtafield,amixtureofequiaxedalpha(called primaryalpha)andacicularalpha(calledalphaprime,~)isobservedTheacicqlaralphaisalso referredtoasmartensiticalphaandisthetransformationproductfromthebetaphasewhich existedatthesolutiontemperature(pointBofFigura16) Thecoarsenessofacicularalphathatformsfromeitherbetaprocessingoralphabeta prngisrelatedtocoolingrateDecrea&dcedingrates~ltincoarseacicularstructures IftheprccassingofTi6A14Vandothersimilaralphabetaalloyshasincludedrelativelylittleorno workinthealph~betafield,andifitissubaequeistlyannealedlowinthe@ophaseregion,the structurereflectsthepriorbetaandtrenaformedbatsstructuresdwelopedduringtheprocessing above,passingthrough,andjustbelowthebetatrensustemper8wre[fextensiveworkingofthe alloyoccursinthealphabetafield,theatmcturaisalteredfrom“thepredominanttransformedbeta structuretooneconsistingofamixtureofaquiaxedprimaWalphaandeitheratransformedbeta (workinghighin,thealphabetafield)orametastablebeta(workinglowinthealphabetafield) microstructure 56Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 IA 0 c D 1 I Fast cooled Slowmoled 4~~ Representative Vanodlum,perccnt Mlcrostructbres Figure16PartialPhaseDiagramoftheTi6AlVsy”nemandtheSchematicRerzresentationof MicrostructureI&ultingfromtheFabricationofTi6A14VAlloyatVarious Temperatures Currently,tftefabricationofmanyalloys,principallynearalphaandalphabetatypsis asxompliahedusingeitheralphabetafabricationorbetafabricationschedulesAsthenames imply,theacheduleadifferprincipallyinthefabricationtempwaturesuAlphabateprocessing, whileusuallyincludingbetatemperaturesforbreakdownfabrication,featuresfinishfabrication (preferablyatleast50percentraduction)inthealptmbetafieldheteprocessingfeaturesextensive wot’lsinthebetafield,~ltinginapredominantlyacicularizedmicrostructure,withaornelimited fabricationattemperaturesbelowthebetaacicularizedmicrostmcture,withsomelimitedfabrica tionattemperaturesbelowthebetatransuswhichisinsufficienttocausetheformationofmuch equiaxedprimaryalphaThe two mainadvantagesofalphabetaprocessingare:(1)oxidation ratesareloweratalphabetatemperaturesthanatbetatemperatures,and(2)alphabeta 57Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 I microstructurehavelongbeenaquatedwithmaximumtensileyieldstrengthandductilityThe advantagesofcorrectbetap(oceasing(incorrectbetaprocessingcanbedeleterioustoproperties) include:(1)lowerfabricationenergyrequirementsforagivenpartsizeorproductionoflargerpart sizewiththesamefabricationenergyandequipment,(2)clowrpartdimensiontoleranceswhi&h mayberelatedtosubstantialmaterialsavings,and(3)improvementofimPortantmechanical propemiasAsummaryofthepropertiesobservedfortheTi6Al4Valloyasbetaprocessed(rela tivetoalphabetaprocessing)areahownbelow Prooarty Tensileyieldstrength Ultimatetensilestrength Tensileelongation Tensilereductioninarea Notchedtensilestrength(Kt=10) Notchedtimefracturestrength(Kt=38) Creepstrength Creepstability Fatiguestrength(at107cycles) FracturetoughnessBetaProcessingEffect Slightlylower Same Slightlylower Reduced Improved Improved Ireproved same Same Ireproved Theamountofreductionduringmetalworking,thereductiontemperatures,tietemperature holdingtime,andthecoolingratesaretheimportantvariablesthatcontrolmicroatructureaand aub=quentlymechanical’propertiesTheproces4ngsteps“maybedistinctlycategorizedforthe variousmillproductforms,ia,forgings,bar,plate,sheet,strip,orextmationsHowever,thereare variableswithinthesevariables,suches:initialingotsize(relativetoreductionsachievablefora specificenditemthickness),plannedorunplanriedbetaprocessingversusalphabeta“processing, finalenditemsectionsize,andvariationsinmicrostructureandtextureassociatedwitheachpro cessinghistoryThedirectionalityeffectsstemmingfromvariousdegreeaoftexturingarewell knowntobedifferentinmntinuouslyrolledstripthaninforgings,forexample,andtobesome whatcontrollablethroughmntrolofprocessingvariableaThemorphologyofmicrostructure,beta groinsize,andprimaryalphagrainsizeandshape(importantwithregardtofracturetoughnessand aekweterstresscorrosionsusceptibility),aresimilarlycontrollabletoalarWextentthroughprocess controlEachvariable,interactingwithpossiblyoneormoreadditionalvariables,cangiveriseto ratherwidedifferencesinmechanicalpropertiesInadditiontotheabovevariablea,thevariables ofsecondaryprocessingmillproductstofinishedpartsviabending,stretching,twisting,machining, andpicklingoperationsmustbeconsideredwithregardtotheirpossibleinfluenceonfinal pmpertiea Thevariablesoffinalheattreatmentareimposedontheprocessingvariablesintroduced earlierHeattreatmentpmcadumaarethe“lastchance”forthetitaniumusertomntrolmechanical pmpertieaandofcoursetheextentofheattreatmentpropertydontrolisaomewlsetlimitedbythe priorprocessingWhileheattreatmentshevizbeendavdopettoWmawtsetneutralizetfskeffectsofL earlierocasrringvariables,somearemorediffkulttoneutralizethanotheraFurther,thevariables ofthevariousheattreatmenttechniquesandschedulesareinfluentialiin~emaalvestowardeffecting propertyvariationThus,relativetothemechanicalpmpardesavailableforTi%A14Valloyes obtainedinaspecificconditionofheattreetmen~theentin?g?rrsu?ofpossiblevariablesnwYhave influencedthepmpertieaobserved(andinaddition,thetestingvariablea)Therefore,consideration foralIvariablesandtheireffectsshouldbegivenintherwiewandstudyofpropertiesobtainable withsdectedheattreatmentsAreviewoftheheattreatmentsbeingusedforTi8Al4Valloy follows:, 58Downloaded from http://wwweveryspeccom I I 1 1“ I I l l l l l Stressreliefannealing (2to4hoursat1100F,aircooltoroomtemperarwe) Fullannealing(ormillannealing] (2hours,1350H5F,aircooltoroomtemperature) Annealingforcontinuouslyrolledsheet (5minut&,16(MF,Rapidfurnacecool,plus5minutes 1100F,aircooltoroomtemperature) Recrystallizationannealing [4ormorehours,1700F,furnacecoolto1400Fat 100F/hour(nofaster),coolto900Fat670F/hour (noslower),aircooltoroomtemperature] Duplexannealing (10minutes1725F,aircool,plus4hours,1250F, aircooltoroomtemperature) Betaannealing[orbatamnditioningfollowedbyother heattreatments] (30minutes,1900F,aircool,plus2hours,1350F,air cooltorm,mtemperature) [30minutes,1900F,aircool;followedbysolution treatingandoveraging] Solutionheattreatment (10minutes,1725F,waterquench) Solutionheattreatmentandoveragihg (10minutes,1725F,waterquench,plus4hours, 1250F,aircooltoroomtemperature) Solutionheattreatmentandaging (10minutes,1725F,waterquench,plus’4hours,9501000F, aircooltoroomtemperature)MILHDBK697A 1JUNE1974 Thegeneraleffects ofthe variousheattreatmentsareasfollows:annealingheat treatments resultinmoderatelylowstrengthbutductilematerial;thespecializedannealingheattraatmenta– ie,recrystallizationannealing,duplexannealing,andbataannealingresultinnearlythesame ctrengthandductilitycombinationsaafromannealingbutwithimprovedfracturetoughness characteristics;andthesolutionheattreatmentplusagingheattraatnsentaresultinimproved strengthwithsomesacrificeinductilityandtoughnessOveragingheattreatmentsresultinleas strengthbutinmoreductilityandtoughnessthanagingheattreatmentsThedifferencebetween“ overagingandagingheattreatmentsonthehardnessofTi6A14falloy(directlyrelatableto tensilestrength)isillustratedinFigura17(Overagingtreatmenta”tendtoproducemoreprecipitate thanagingtreatments,@indifferantformanddistribution,toaccountfordifferencesinproper ties)Betaheattreatmentsgivenaspreliminarytreatmeritstendtolo~rstrengthandductilitybut toimprovetoughnessSolutionheattreatment,perse,resultsinaductileconditionsuitablefor formingand/orsubsequentagingbutisusuallynotusadasafinalheattreatmentforasawiceable part I 59Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 v3a 35 34 33 32 31 30 I I III o10 100moo Iw AgingTime,minutes ) Figure17EffectofAgingTimeandTemperatuniontheHardnessofTi6A14V AlloySolutionAnnealedat1662FandWaterQuenched Whileitisnotpossibletodescribethefabricatioriandheattreatmentvariablesthatexistfor allcommercialalloys,itishopedthatthefeaturesdetailedfortheTi6A14Valloycanbeviewed asanexempla~caseManyoftheprinciplesdescribedpertaintonumerousothermaterialsand canbedirectlyappliedOntheotherhand,sufficientdifferencesexistbetweenTi6Al4Valloy andalphaalloys(egalphaalIoysarenotheattreatable)orbetaalloys(egbetaalloysare routinelybetafabricatedandseldomshowpririsaryalphainstructures)sothatthecarefulrwiew ofthemetallurgyofeachgradetobeusedshouldbeundertakenpriortousingthem “HeatTreatmentProcesses“ 21 HeatTreatmentRequiremersteGenerallyheattreatingproceduresareusedto obtaindesiredpropertieswithinthelimitationsofthe_ivetitaniumallOYa,Mill PrOdUCt forms,sizes,andprformetallurgicalconditionsimposedbypriorprocessingTherequirements forcontrolofbeettreatingprocesses ,,asappliedtotitaniumandtitaniumalloysinmanufacturing andmaintenancefacilities,arecoveredbySpecificationMILHE1200A,“HeatTreatmentof—— TitaniumandTitaniumAlloys”Thisspecificationiscurrentlybeingstudiedtodeterminethe extentofrwisionstobemade,sinceitcurrentlydoesnotmnteininforniationonalltitanium alloyslistedinmajormaterialsspecificationssuchasMlLT90@andMlLT9047andotherssuch essomenewerAMSspecificationsInaddition,MlLH81200Apraeentlydescribesheattreatments forquiteafewalloysthatarenolongerinproductionand/orusedNevertd’ieless,thisspecification describestheminimumsacceptableforsuchitemsastemperaturemeasuringequipment,furnaces, heatingmedia,fixturesandracks,andheattreatmentoperationsandprocedures(time temperatureandcoolingdetails)aswellassampling,inspection,andtestingproceduresAs 60Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 described inprevioussubsections,temperaturesandtimesforheattreatmentaremerelytwoofthe variablesthatcaninfluencefinalproperties;othervariablesrelatetoalloychemistry,fabricating schedules,partthickness,etcForthkreason,thetempera~reandtimerrm9esrecommendedfOr heattreatmentareadjustabletodwelopthedesiredpropertiesfortitaniumallowwhichare specifiedintherelatedprocurementdpcuments,ordetailedinapplicabledrawingsandpurchase orderaMandatorytemperaturesandsoakingtimesspecifiedforthevariousheattreatments (solution,aging,annealing,andstressreliefannealing]tocoverallthevariableafortitaniummate rialsaspreviouslydescribed,cannotbestatedOntheotherhand,therecommendationsofspecifi cationssuchasthoseinMILHB~2(KIA,establishaminimumacceptancelevelforproceduresand properties,anddeviationfromthemmustbesubstantiatedbyactualteststoprovethatthedevia tionproducesanequivalentorsuperiorproduct 22FurnacesSincetitaniumissuchareactivemetalatelevatedtemperatures,vacuum furnacesareidealforitsheattreatment,However,whilevacuumfurnacesarecommonlyusedto heattreattitaniumanditsalloys,theexpanseofvacuumheattreatmentisnotpracticalformaoy proceduresandpartsTherefore,furnaceshavinginertgas,air,orcombustedgasesastheatmos pheresareusadmorecommonlyInallcrses,thefurnaceshouldbeofasuitabledesignand criwtructiontopermittheeasyhandlingofthepart,theuniformheatingofthepart,andany 1desiredpreferentialcoolingofthepert Inthecaseofinertatmospherefurnace:,theinertgassuchasargonorhelium,shouldbeu~d atadewpointof65Forlowertopreventcontaminationofthetitaniumpartsbeingheattreated Theinertgasshouldbecirculatedtoinsuretheprotectionofallsurfacesofthepart(s)Inthecase offuelfiredfurnaces,wherecombwtedgasistheatmosphere,themostimportantprecautiontobe observedisthatthetitaniumworkpieceshouldnotbeexposeddirectlytotheflameThefurnace atmosphereshouldbeasfreefromwatervaporaspossibleandshouldbeslightlyoxidizingBoth watervaporandincompletelyburnedfuelvaporacanreactwithtitaniumtoformatomichydrogen whichisreadilyabsorbedbytitaniumTheonlypracticalmethodforremovinghydrogenfrom I titaniumisbyvacuumannealingTheothercontaminatinginterstitialelements,carbon,oxygen, andnitrogen,cannotberemovedfromtitaniumalthoughcontaminatedoutermetallayerscanbe removedfromworkpieces Airchamberfurnacesareveryflexibleandeconomicalforhandlinglargevolumesoftitanium partsbeingheattreatad,especiallyformoderatelyIowtamperature,heattreatmentsOntheother hand,athightemperatums,wheresurfaceoxidationbecomessignificant,amufflefurnacedesign usingexternalheatingoffemmomprotection,particularlyifthefurnaceisgasfiredElectric furnacesforsmallIotaorspecialheattreatmentsarepreferred,sinceheatingcanbeaccomplished eitherinternallyorexternallywithaminimumofcontaminationResistanceandinductiontypea orewcsncrurnacasalsonaveoaenuaaotommumlzecontemmauonmrougnreaucaoneaung timesSaltbathtypefurnaceshavebeenusedfortheheattreatmentoftitaniumalso,although fimacasofthistypedonotappeartobepreferred,“probablyduetotheintergranularattackof titaniumbycertainsalts,notablychlorides,whichnecessitateremovaloftheoutermetallayers ofworkpiecessocontaminated Theefftitivenessofcertainheattreatments,notablysolutionheattreatmentislargely dependent,bpontheeffectivenessofthecoldquen~ingterminatkmofthethermalexposure C)u~nchdrftaytimeiscriticalwithregardtoobtainingoptimumpropertiesForthisreason, furnacesforsolutionheattreatment,forexample,shouldbeIrxetedincloseproximitytothe quenchingequipmentInmanycases,furnacesandquanchingequipmentarebuilttogetherin suchawaythatthetitaniumpartcanbedroppedorrolledfromthehotzoneintothequenching 61Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 mediainaveryshorttimeWateristhemostwidelyusedquenchingmedium,althoughlowviscosity oilsandwatercontainingvmt?jngagents(eg3percentNaOH)havebeenu~dalao 23StressReliefAnnealingTreatmentsThemanipulationoftitaniumduringfabricatiofi and/orweldingoperationsinmakingenduseitemscanresultinthebuildupofresidualstresses Sincethepartmaybeinapenultimatefinishedconditionwhenthestressesarebuiltup,afinalfull annealingoperationmaynotbefeasibleduetosurfaceoxidation,fixturingtoholddimensions,or mechanicalpropertyconsiderations(egifthepenultimatefinishadpartisintheagedcondition) Fortheallavaitionofsuchresidualstress,thestressreliefannealingofthepartmaybeconsidered Thisisgenerallyamoderatelylowtemperatureshorttimethermalexposuredesignedtorelievethe stressesbythermalactivationbuttonotdegradepropertiesbyoxidationorundesirablephase transformationsAsindicatedinTableXXVI,temperaturesintherangeof700to1450Fcanbe usad(varieswithalloycomposition)althoughcommonlytemperaturesaround1000Farepopular Tominimizeoxidation,thetimeandtemperatureofthestressreliefannealshouldbekeptlow Frequentlyonlyportionsoftheresidualsressesareremoved,buttoaIwelnotlikelytobetrouble someAcommonpracticeinthestressrelief,ofweldmentsinagedstructuresistoperformpartof theagingheattreatmentpriortoweldingandto&rmpletetheagingafterwelding,simultaneousy relievingresidualstressesAgingheattreatmenttemperaturesalaocanbeusedtorelievetheatresses innonweldadstructurestobefinishedintheagedconditionHighertemperature,longertime, stressreliefannealingtreatmentsresultinconditioningthemetaltoapproachthefullennealedstate 24AnnealingTreatmentsAitressfree,&qrsilibriumc~”lstructureintitaniummaterials achiewedbyfullannealingisgenerallythemoatductileandstableconditionTheannealedstructure varieswithalloytypeasmightbeexpeckad;alphaalloysideallyareannealedtoan“allalpha”(trace ofbetaphasepossible)equiaxedmicrostructure,nearalphaandalphabetaalloysareannealedto equiaxedalphaplusresidualbetaphasemicroatmctures(alpha/betaratiodependsoncomposition andannealingtemperature),andbetaalloysam’annealedtoanequiaxedbetamicrostmctureSince annealingtemperaturesforbetatitaniumalloysmaybethesameassolutionhaattreatmenttem peraturesandbetaphasemayberetainedwitheithersloworfastcoolingfromtemperature, annealingandsolutiontreatmentsforbetaalloysareiynonomous AsdescribedinSectionII1,Paragraph20,thereareseveralkindsofannealingvariationsfor theTi6A14ValIoyThevariousthermalexposureaaredesignedtopromotemodificationsof microstructuma,commenaurewwithvariousmillproductforms,whichyieldsomewhatdifferent combinationsofstrength,ductility,endtoughness,butcharacteristicallythemoderatelyWron9and stablerenditionispromotednotthehigheststrengthconditionTypicallythemorehighly alloyednearalphaimpositionsanrltheelphabetaalloysmaybeannealedinmorethanone mannerOneofthecommonaimsofallsuchheattreatmentsistoachievearepr~uciblestructure capableofresistingfurtherchangebyphasetsanaforrnationwhenexposedtotheelevatedtempera turesofaserviceexpcsawwIngeneral,thehightemperatureexposureinemodifiedannealingheat treatmentfixesordeterminesthephasemorphologyandalphe/beteratio(subjecttoapreferred priorfabricationschedule)andthefinallowtemperaturepartofthetreatmentstabilizesthecom positionofthebetaphasetoresisttranaforpiationInmanyways:thelowtemperatureexposure ofmodifiedannealingheattreatmentsarelikeoveragingheattreatmentstiicharediscussedin Paragraph26Themodifiedspecialpurposeannealingtreatmentsalsoarefurtherdiscussedina subsequentpaiagraph(Paragraph27)Thefrequentlyusedfullannealingtimeandtemfwatufe rangesfortitaniumalloysamgiveninTableXXVIIThaaeannr@ingtreatmentsresultinthe moderatelyatmng,ductileandtoughpropertiescommonlyaoughtforstructuralmaterials I 25SolutionHeatTreatmentsThermalexposuresthataredesignedtodevelopapreferred metastablecompositionofthebetaphaseintwophase(alphaplusbeta)orallbetaalloysare 62Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXXVISTRESSRELIEFANNEALINGSCHEDULES StressReliefS&etsReIief NominalCompositionw,%Temperature,FTime,hourt Una!lO@Tigradesand Tio15to020Pdalloys Ti5Al25Sn(andELI) Ti1to2Ni Ti2cu l_I225AlllSn5ZrlMOO2Si li5Al6Sn2ZrlMcO25Si Ti6Af2Snl5ZrlMOO35BiOlSi Ti6Al2CtlTM8M0 Ti8AllM&lV TiBMn Ti3Al25V TilAf3MmlV li5Af2Sn2Zr4Mo4Cr Ti6Af4V(andELI) TWAf6V2Sn Ti6Al2Sn4Zr2Mo Ti6Al2Sn4Zr6Mo Ti6Al2Sn2Zr2Mo2CrO2Si Ti7AL4Mo TilAl8v5Fe TI2Afl1V2Snl1Zr Ti3Al8V6Cr4M04Zr Ti115Mo6Zr45Sn Ti6MoBV2Fe3Al Ti13V11Cr3Al7s0to825 SS0to925 975to1000 lcmoto1100 990 to1200 Notreported 1075Io1125 Notreported Notreported Notreported looot01200 lo75t01125 1450’ 9oot01100 700to1m 9oot01100 Notreported 900to1200 lMfotO1100 lMJot01200 900to1200 Notrepmted Notreported 900to 130L” 1000s01300 Notreported Notreported(d) Sootolloa 1325to1350 950t01100 9oot01000 1400to14507to B 2t0 4 1/2 to1 114 to2/3 114to6 1 714 to1 2 l/6to1K4(a) 1/2[02 l12t03 l12to B 1/2to~(b) 2 to 4(C) 1/2to4 lt04 l12t0 B into4 I Notes: (a) Athortexposureat fullannealingtem&etursmaybeusedAircoolingfromthisexposureresultsin stimulatingtheduplexannealedrendition:slowcooling:stimulatesthemillannealedmndhion (b)ForlWPWcentrelief:50iw1000For5hr1200FFor50percentrelief;5hr1000Forl/2hr 1100 F (c) Cuntmonlyusedranges (d)Fullannealingoraboved’mbetatransustemperature(1460 F)maybeusedto relievemtidualstrets?s orstressreliefmaybeachievedsimultaneouslywithagingheattreatment (elStretsreliefmavbeacftk’edsimultaneauslvwithagingheattreatment (f)“Stretsreliefmaybeachievedusingthorttimeexposureatthesolutionannealingtemperature 63Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 ,,TABLEXXVIIANNEALINGSCHEOULES I Annealing: Temperature,AnnealinTime, ,NominalComposition,w%F1 hoursal UnalloyedTigrades andTiO15to020Pdalloys Ti5Af25Sn(AndELI) 11to2Ni Ti2cu lT225AlllSn5ZrlMoO2Si Ouplex(2step)anneal(c) Ti5Al6Sn2ZrlMoO25Si Duplex(2step)anneal(c) Ti5Al2Snl5ZrlMoO358W1Si Duplex(2step)anneal(c)1300 lmot01500 1300to1675 1250to1450 f1650+ \ 930 18m+ 1100 1300 {1950+ lWO2(b) l14t04 l14t04 Notreported l12t02 1 24 1/2 2 1 114 1 l14t02 l14t08 Intel [AC) (AC) (AC) (AC) (AC) (AC) {AC1 (AC) (AC) (AC] Ti4jAf2CblTaO8Mo 13W;01700 Ti8AIlM&iv 1400t01450 Duplex(2step]anneal(c) {1650to1860+ Ilooto 1375 Ti8Mn12543t01350 Ti3Al25V1200to1400 Ti4AJ3M&lv 1225to1350 Ti5Al2Sn2Zr4Mo4C$ Ti6APIV(AndELI)1275t01600 1350to1400 Ti8Af~V2Sn 1300to1600 Ti6Al2Sn4Zr2Mo 13wt01560 Duplex(2step)armed(c) {16EL)t01750+ lloot014Wl {~650+ Triplex(3step)anneal(c) 1450+ llm Ti6Al2SrwlZr6M$I 1500t01600+ Duplex(2step) lnneal(c), llmtolm Ti@Al2Sn2Zr2M~2CrO2Si T*74M4M0’1425to1475 lTIA18v6Fe 12Wto1400 Tii2Af11v2Smlla14CQto1600 Tii3A18V@2J4M04Zr1600t01700 Tiil15Mo6Zr46Sn1275t0161Xl TMMO6v2F&Al 1460 Ti13vllC+3AI1400tolm Notes: (alGYMingratesinparentheses:AC=aircoding,FCfumxacoding,wC==waterquench (b)Cnnmonlyusedannealingtreatment (c)8oththehighandthelowtemperaturestepsarerequiredThreestepsarerequiredintriplexanneafi;g (d)SlowcoolingresulttinthemillannealedconditionAircoolingresultsintheduplexannealedcondition (e)Slowcoolingto1O(B1O5OF,notexceeding300F/hour,improvesstabilitv (f) (9) (h) [i) 8 l/2t0”ll/2 lt03 lt04 Notreported l14t08 2(b) lto8 lto8 lRto,l l14t08 1/2 114 2 into1 l14t08 Notreported lto8 lto4 1/2 to1 114ta112 lllotom 1/10to114 l/lotO1 ,(AC) (AC) (AC)(FC)(d) (AC] (AC) (Fc)(@) (AC) (Fcl(el (AC) iAci (AC)(FC)(fI (Fc)(e~ (AC) (AC) (AC) (AC) {AC) (AC) (AC)(g~ (F@) (ACl(FCl(f) (AC)(FCl(h) (AC)(WQ)(il (ACNWQ)O) (ACIONCl)(~) (AC)(WO)(’) Ertherairc&lingorslowcoolingasin(e) Shorttime,hightemperature secondstepforsheetand upto “8’hwrsat1100Fforthicksectionproducts Eitheraircoolingorslowcciolingto1000F,followedbyW& Eitheraircoolingorwaterquenchingfromsolutionannealingtemperature 64Downloaded from http://wwweveryspeccom MILHDBK697A I 1JUNE1974 I designatedsolutionheattreatmentsAfeatureofsolutionheattreatmenttechniqueistorapidly coolfromtheelwatedtemperaturetoambienttemperaturetoretainthecompositionofthebeta phaseesitexistedattemperatureThisbetaphasemayretainametaatebilityoritmaytransform tovariousdegreeauponcooling,dependinguponitacomposition,butineithercayitiscodedtOa Condmonwtslcn WIII transtormupon SUbS&pJentagingneattreatmentIhetransTOrMatlOnofttse phawafixedduringsdution”heattreatmentbysubsequentagingheattreatmentsisthemechanism responsibleforthe highstrengthinheattreatabletitaniumalloysTableXXVIIIgivesthecommonly uwdtimeandtemperaturesolutionheattreatmentschedulesfortitaniumcompositionsamenableto strengtheningbysolutionheattreatmentandaging(STA)procedures ~Thesolutiontemperaturerequiredtobringaboutapreferredsolidsolutiondependsuponalloy compositionanddegreeofheattreatmentresponsedesiredGenerally,foralphabetealloys,tem peratureshighinthetwophasefieldpromoteahighaging(strengthening)responseandviceversa Soakingtimesattemperaturerelatetotemperatureuniformitywithinsectionsofvariousthickness andwlidvolubilityequilibriumconditionsSoakingtimerequirementsincreasewithincreasing sectionthicknessTheminimumsoakingperiodmaybedeterminedbytestingsamplestomake surethattherequiredmechanicalpropertiescanbedwelopedfromthesolutiontreatmentused Minimumsoakingtimesaresoughtforproductionreasonsandinordertominimizethecontamina tionthatcanoccuratsolutiontemperaturesTheoxygensurfacecontaminationwhichcbmmonly occursduringsolutiontreatmentinairisfrequentlyremovedpriortofurtherprocessingsuchasby formingoragingtreatments Arapidcooling(egwaterquenching)fromtheaolutiontemperatureisnecessarytoobtain themaximumheattreatmentresponse(strengtheningorhardenability)inalphabetaalloysQuick coolingalsoaidsinavoidingtheformationofgrainboundaryalpha(whichcanoccuruponslow cooling)thatcanresultinpoorductilityRichlybetastabilizedalloyssuchasbetaalloyscanbe cooledleasquickly(egaircooling)fromsolutiontemperaturesandstillretainagoodaging responsebecausethebetaphase,beingmorehighlyalloyedthaninalphabetaalIoys,ismore sluggishFortheabovereasons,betaalIoyshavedeeparhardenabilitythanalphabetaalloysThat is,thickersectionsmaybestrengthenedmoreuniformlythroughthethicknessthancomparable thicknessesofalphabetaalloysInthicksectionsofweakly,betastabilizedalphabetaalloys,center sectionscannotbecooledrapidlyenoughtopromotemuchsubsequentagingresponseandforsuch allovstheirdeothofhardenabilitvislimitedAllovsthatareatronqlvbetaStabilizedhavea d@3D hardenabilitywhichisgenerallyp~oportionaltothedegreeofbeta&bilizationThefollowing tabulationshowatherelationshipbetweencompositionsintermsofbetastabilizationanddepthof hardenability(sectionthicknessthatcanbestrengthenedbySTAtreatmentalthoughnotnecessarily toauniformstrengthlevelthroughoutthethickness) Ti6Ai4V,weaklybetsstabilized:upto1inch Ti6Al6V2Sn,greaterbetastabilization:upto2inches Ti6Al2Zr2Sn2Mo2Cr025Siand Ti6Al2Sn4Zr6Mo,richlybetaatebiliz~:upto6inches Ti6M06V2Fe3Aland Ti13VllCr3Al,betsalloys:upto8inches RelativetorapidcoolingandtheattainmentofacceptableSTAmechanicalpropertiesin alph%betaalloys,isthequenchdelaytimethetimedelaybetweensolutiontemperatureandthe actualsartofthequenchingoperationObviously,ifthedelaytimeislong,thepartwilIbe essentialIyslowcooledbetweenthesolutiontemperatureandwhatevertemperaturethepartreaches justpriortoquenchingThatsituationcanleadtopoorheattreatmentresponseandtherefore quenchdelaytimeshouldbeminimizedespeciallyfortheweaklybetastabilizedalphabetaalloys 65Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXXVI11SOLUTIONHEATTREATINGSCHEDULES SolutionTemperature,FSoakingTime,hours” FlatRolledBarsandFlatRolledBarsand Nominalcomposition,wt% ProductsForgingsProductsForgings TL3AI25V1600to17001600to1700 114101/3l14tol13 Ti4A13M0lV 1620to17001700to1775 1/10to112l16t02 Tk5A12Sn2Zr4M040— m5@~d(b) DupIextolutiontreatment(d) {1500to1575+—4(C) — 1475— 4 Ti6A14v 1650to17751650to1775lllotol1/6to1 Ti&W6V2Sn 1550to16501550to1650116to1121/6to1 Ti&lMSm4Zr8Mo 1550t017001550to170U116to1/2l14t01 Ti6Al2Sn2Zr2M*2CrO2St 1725to17501725to1750114tol(e) Ti7A14Molfltol(e) 1675to17751676to1775116to1112l16t02 TilAf8V5Fe 1350t01450lffitoz Ti2Al11V2Snl1Zr(f) 1350to145014wt017001/6=1/2[e)l~tol(e) li3Al6V6124M04Zr(g) lmto17001500t01700II1Otol~(e)1/4tol(e) Ti115Mo8Zr45Sn(g) 1276tolSO01276to16001/10tol~(e)l/lOtol(e) liBMo8V2Fe3Al(9I 1450to14751450to1475l/fotov3(eJ1/4wl(e) Ti13V1lCr3Al1400to1s00 1400t015001/6tolm(e~1/6to1(e) Notes: (alOnlyaltoysrecommendedforuseinthetolutiontreatedplusagedconditionwetabulatedSolutiontreat: menttterminatedbywaterquenching(WO)unlessotherwiseindicated‘, (b)Solutiontreatmentforbetafabricatedmaterial (c) Airmold fromhightolutiontemperaturetoIoivsolutiontemperature (dlsolutiontreatmentforalphabetafabricated material (e)%lutiontreatmenttemtimted byeitherwaterquenching(WI)oraircooling{AC) (f)Typicalsolutiontreatmentsindicated (g]TheIormertimehidwrtenmteratumsolutiontreatmentarefavoredforthicktectionprcductt(eg,plateand fo~ingsjwhile&o&time,l&ertemperaturetreatmentsamusedforitemssuchassheetandwire; TA8LExxIxMAXIMUM auErwcH tfELAV, WROUGHTALLOYS (For lntnt=tionTYpetlmnching)(’) NcmtimlTfticknets,, MaximumTime, irtchetm~~(b} Upto0081ind 4 CfverO817 NtwP (a) (b)Cluench delay time thouldbeginwttenthefurnacadoorbeginttoopenand endtienthelastmmerofthe loadisimmertedinthewaterquenchtankThemaximumquenchdelaytimemaybeexceeded,with extremelylargeloadsorlonglength ifperformancetestsindicatethatallpartscomplywithallother requirements Shortertimesthanthosethownmaybenecessawtoemurethattheminimumrequirementsamcomplied withwhenquenched 66 LDownloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 I 1 I I I IThemaximumquenchdelaytimessuggestedforvariousproduct,thicknessesare9ivenin TableXXIX 26AgingHeatTreatmentsTheheattreatmentsrecommendedtoachievethecommonly expectedhighstrengthlevelsfortitaniumalloysaregiveninTableXXXAgingheattreatments causethetransformationofthemetastablephasesproducedbythesolutionheattreatmenttoother phasesClassically,alphaphaseprecipitatesfromthebetaphaseduringagingresultinginaresidual enrichedbetaphaseandalphaprecipitate MetastableB+=ppt+enrichad8 However,otherreactionsarecommonplaceForexample,theomegaphasealsomayprecipitate fromthebetaphaseandintermetalliccompoundscanformuponagingFurther,inthecaseof cerIainalloys,thebetaphaseexistingatthesolutiontemperaturetransformsuponquenchingtoan alphaformthatissupersaturatedwithbetastabilizer(alphaprime)Duringsubsequentaging,the supersaturatedalphatransformstobetaandalphaphases Supersaturated~+6+uppt Itisnotunusualforseveralofthesereactionstooccursimultaneouslyduringtheaginghaattreat menttocontributetothetotalstrengtheningprocess AsindicatedbythecurvesofFigure17,thetimeandtemperatureoftheagingexposurehas muchtodowiththestrengthlevelachievedClassically,thelowagingtemperaturesresultinthe formationofmuchomegaphasewhichcharacteristicallyimpartshighstrengthandlowductilityto thematerialbeingagedHigheragingtemperaturestendtoprecipitatealphafromthabetaphase byanucleationandgrowthprc+xas,andwithlongeragingtimes,alphaparticlesizemaybecome large,theresidualbetaphasemaybesoftened,andanetreductioninstrengthmayoccurThis conditioniscalledtheoveragedconditionItischaracterizedasamoderatelyhighstrengthcondi tioncombinedwithbetterductilityandtoughnessthananagedconditionforthesamealloywith thesamepriorprcxxsainghistoryOveragingmaybecarriedouttoanextremedegreetorender thepropertiesofamaterialsimilartothepropertiesofafullyannealedstructure 27SpecialPurposeHeatTreatmentsThedemandforhigherstrengthandbetterductility intitaniummaterialswhichexistedsincetheirfirstuse’hasrecentlybeenaccompaniedbyademand foradditionalcharacteristicssuchasimprovedtoughness,improvedthermalstability,andimproved resistancetostresscorrosionTomeetthisdemand,thedevelopmentofnewtitaniumalloyshas beenpursued,andinaddition,haattreatmenttechniqueshavebeanmodifiedtoaffordproperty improvementsForexampla,severaloftheannealingheattreatmentsdascrikdfortheTi6A14V alloyinsectionII1,Paragraph20,arerelativelynewandhaveledtothaavailabilityofmechanical propenymmbinationsthatwerenotavailablawithsimplemillannealingorwiththesolution traatlngplusagingprocedures RecrystallizationAnnealing,forexample,affordsamaximumtoughnessandresistanceto atreascorrosioncrackingatanannealedstrengthlevelTherecrystallizationannealisachiwedby furrtacecoolingfromamoderatelyhighsolutiontemperatureinthealphabetafieldSuchatreat menttendstoenrichtheresidualbataphaseatalowvoldmepercentofthestructureandtoother wiseproduceanequilibriummicrostructurecomposedofequiaxedalphaandresidualbataphaaes verystableandtough DuplexannealingissimilartosolutiontreatingplusoveragingforTi6Al4Valloywiththe importantdifferenceofalowcoolingratefromthesolutiontemperatureDuetothedifference 67Downloaded from http://wwweveryspeccom MILHDEK697A 1JUNE1974 TABLEXXXAGINGHEATTREATMENTSCHEDULES(a) I NominalComposition,w%AgingTemperature,FAgingTimehwrs(b~ Ti3Al25V Ti4Al3M&lv Ti5Al2Sn2Zr4 Ma40 Ti6A14v Ti6Al6V2Sn Ti6AlZSn4Zr6M0 Tt&N2S*2Zr2Me2f3O2Si Ti7AJ4Mo TilAl8V5Fe TI2AI1lV2SItllZr(e) Ti3Al8V6@4Mo4Zr Ti1 15Mo6Zr45Sn Ti8Ma8V2Fs3AI Ti13V11Cr3Al900to950 9oato975 1050 tol150(c~ lloot0120Q tlootolow 1050to1300(C) 875t01150 1100to12@~ lo50t01150 1200to1300(C) 9i%lzw(d~ 8oot0110u 850to1250 6oot01050 1050to1 Zw(cl 900 11OO(C) 900to950” 1100,s01200[CJ 825to10002to8 Zto12 1/6to6 8 4t012 Zto4 Zto8 2to8 2to8 lt04 4 4to24 Zto4 1to48 Bto24 6t012 8 8 8 8to16 2to60 Notes: (a)On!yallowrscommendadforuseinthesolutiontreatadPlusagedmrditionamtabulated (b) Agingandoveragingtreatmentsareterminatedbyaircooling (c)Oversgingheattreatmartttshsdulet (d)Theoveraesdconditionmaybsachievedwiththehighe~tefnpttraturssoftierangeindicated (e)Agingtreamtmtsincludingdoubleagingtreatmentswithinthetime andtemperaturerangesshownhave bsanavsluatedAstsndardagingtreatmmthesnotbaentelected in cooling rate,the batephaseresidualfromthesolutiontreatmentisnotsubjecttoprofound transformationsinceitisalreadypafiallyatrdrilizadduringslowcoolingThesubsequentoveraging tn?atmentfurdterstabilizesthetwophasemicrostructureandaffordsamaterialwithmoderately highstrangth(intermediatetoannealedandSTAstrengths)andgoodductilityandtoughnessAlso, theeliminationofthequenchingoperationoffersaproductionadvantagefortftisheattreatment Betaannealingofalohabeteallovsasthenameimcdiasisa&omolishedusinaanannealina temperatureabovetie&atransusternpemturaandralativeiyslowm“olingfromhishightem pereture,followedbyantweragingtreatmentTheh!ghsolutionannaelingtemperatureresultsin a100percentbatsmicrostructure(attampereture)which~nsfonnstoanacicularalphaatructura uponcooling(seeStructureAof Figure 16)Trensforrnadbetamicrostructureareassociated withexcellenttoughnessanddesiteblacombinationsofotherpropatiiaaasdescribedpreviously VihiletheatmvespecialheattreatmentshavebeandascribadusingthecaseforTL6AI4Valloy, otheralphabetacompositionscanbesimilarlyheattreatadwithsimilarresultsInadditionto thesetreatments,samecompositionshavepreferredheattreatmentschedulesthatweredeveloped 68Downloaded from http://wwweveryspeccom MILI+DBK697A ,,1JUNE1974 alongwiththedevelopmentofthealloyorofaparticularalloyform,tooptimizepropertiesFor example,continuouslyrolledTt8Al4VatripisannealedaccordingtoaspecialscheduleFurther, theTi8AllMelValloyhassimpleandduplexannealingtreatmentsapplicabletovariousproduct formsandtothedegreeofstabilityandotherpropertiesdesiredTheTi8A12Sn4Zr2Moalloy hasduplexandtriplexannealingtreatreien~,andvariationsinthe,heattreatmentach@ulea ~ appropriate tovariousproductformsThusitbecomesapparantthatwhilebroaddesxiptionsof thevariousheattreatmentsfortitaniumcanbesummarized,itisrecommendedMatUSW$ofanY particulartitaniummaterialshouldseekdetailedheattreatmentinstructionsforthedevelopment ofcombinationsofpropertiesdesired 28HeatTreatmentPrecautionsTherearetwofundamentalrequirementsforsuccessful Ititaniumheattreatment:(1)minimizingcontamination,and(2)maximizingtheaccuracyofthe time,temperature,andcoolingrateprescribedforheattreatingagivenmaterialTheimportance ofthelatterpointandtherelatedmetallurgicaleffwtshavebeenreviewedintheforegoingsections Additionalpointsrelatedtoprecautionsinavoidingcontaminationaresummarized Theoxidationoftitaniumatelevatedtemperaturescanoccurinairatquitelowtemperatures includingagingtemperaturesandcan(cadtothedegradationofpropertiesifagingtimesarepro longedorifagingtemperaturesarehighTheactualscalingoftitaniumcancccuratabout1lGGF, andabovethistemperature,scalingandcontaminationofeubscalemetallayersincreaseswith increasingtemperatureandtimeofexposure”Oxygendiffusionresultsinahard,brittlesurface (subscale)layerThislayershouldberemovedbymechanicalorchemicalmeanspriortoforming parta,furtherheattreatmentsteps,orapplicationin’components In addition tooxygencontamination(andtoasmallextentnitrogen)precautionsthatshould beobservedduringheattreatment,hydrogencontaminationprecautionsshouldbefollowed Hydrogenmaybereadilyabsorbadfromuncontrolledatmospheresofheattreatingfurnaces(e9 hiahdewDointininertoesatmospheresfuelvaDorainfuelfiredfurnecesoratmosphericwater va~or),andfrompickli~garids~leremovalbathsAbsorbedhydrogen&nbeemb~ttlingin titaniumundervariousconditionsrelatedtoalIoytypeThereforeifahydrogencontaminationis suspected,itshouldbeeliminatedbyvacuumannealing The above interstitialcontaininationproblems are nottheordyonasof concernFor example,ironoxidein contactwithvery hightemperaturetitanium”canresultinathermitetype reactionInaddition,thepresenceofchloridesduringheattreatment(wenfromfingerprints)can leadtoastresscorrosionproblemOthermetals canreactvigorouslywithtitaniumatelevated temperatures,andeocanceramic,otherinorganicandorganicmaterialsThenecessityforthe cleanlinessoftheheattreatmentoperationbecomesapparentwhenthereactivityoftitaniumwith practicallyeverythingit isincontactwithisfullyrealized OiatortionduetoheattreatmenthasbeenaproblemamongsometitaniumusersGenerally noproblemexislsiftheworkpiecabeingheattreatedisnotfinishedtofinaldimensions,sincea finaldimensionalcontrolcanbeimposedonaheatdistortedparlHowaver,theheattreatmentof dimensionallyfinishedpenscanbeaproblemduetodistortionandshouldbeavoidedInsome cases,fixturingcanbequitehelpfulinavoidinggrossdistortion,andinfactisfrequentlyusedwen o?undimensiorsedworkpiecesHowwerfixturingcannotbereliedupontopreventdistortionand warpagecompletely,sothepreferredtectiniqueistope~ormheattreatmentpriortodimensional finishing I 1 69Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 FormingProcesses 29GeneralTitaniumismoredifficulttoformthanthemorefamiliarsteelsandaluminum alloysTitaniumalloysgenerallyhavelesspredictableformingcharacteristics,andbeingquite strongmaterials,requirehigherformingpressureswhichmustbecontrolledoverasmallerwork abilityrangeThatis,thespread between yieldandultimatestrength,expressedasapercentage oftheultimatestrength,issmallerOthercharacteristicsadverselyaffectingtitaniumformability includetendencies toward nonuniformitiesin sheet,notchsensitivity,gallingsensitivity,lowshrink capabilities,andpotentialembrittlementbyinterstitialcontamination(asinhotforming)Sub stantialimprovementshavebeanmadeinformingmachines,diesandtechniquesduringthelast severalyearathathaveladtopracticesforformingtitaniu’mthathavehadahighdegreeofsuccess Nevertheless,thesuccessfulformingoftitaniumstillrelieson:agooddealofexperience Somecompaniespreferhotformingtoimprovetheformabilityanddimensionaltolerance controloftitaniumOtherausethecoldforming,hotsizingapproachtoaccomplishthefabrication ofpartshavingclosetolerancesandacceptablemechafl~calproperties Whenformedatroomtemperature,unalloyedtitaniumanditsalloysbehavelikecoldrolled stainlessateeLForexample,instretchforming,titaniumseemstobehavelikefullhardstainless steel,whileinpressforming,unalloyedtitaniumcanbeproducedtoshapesachievedinonequarter hardstainlessFurther,theformabilityofmoattitaniumalloysat1200Fiscomparabletothatof annealadstainlesssteelatroomtemperatureThecommercialunalloyedtitaniumgradas,being moreductilethanthetitaniumalloys(generally),presentfewerproblemsandcanbefabricatedto simpleshapesatroomtemperature Springbackintitaniumisoftenunpredictablebutalwaystoadegreethatcanbeaproblem ifnot~kenintoformingconsiderationsSpringbeckanglw”commonlyrangebetween2~and40 dagraasforsheetsofTi6A14ValloyformedinbendingatroomtemperatureThewidevariat~ns inyieldstrengthamongdifferantheats,magnifiedbyalowmodulusofelasticity,cangiveawide spreadinspringbatkangle,especiallyifthebendangleofthepartisfixadbytheformingtooland thebendradiustothicknessratioislargeOfcourse,springbackandspringbacknonuniformity, tendtodiminishwithincreasingformingtemperature” Alltitaniumalloysresistsuddenmovement;hence,stretchingandpressingoperationsare usuallyrecommendedwhenacontrolledrateofloadapplicationcanbemaintainedTheslower theformingspeed,thebattertheformabilityatroomtemperatureAtelwatadtemparaturaa,some titaniumalloys,likeTL6A14V,havebatterformabilitiesathigherformingtemperaturesFaster speedsmaybenecessaryfromaneconomicviewpoint,andcanbetoleratediflargeradiibanbe accommodatedinthepartdesignTheformabilityoftitaniumispoorinoperationscharacterized byshrinkflangessuchasfoundinrubberpressformingConsequentlyareasthatrequiregathering ofmaterialshouldbeminimizedwhendesigningparts Hotformingimprovestheformingcharacteristicsoftitaniummainlybyincreasingitaductility;“ majorimprqvamentsnormallyoccurabove1000FformosttitaniumalloysTheyieldstrength normallyatar&todecreasesignificantlyataboutthesametemperaturearidthisleadstolower formingpressureraquiramantsPartsformedatelwatadtemperaturesexhibitgreatermntouruni formitysincesmallerpropartyvariationsexictbetweenvariousIotaofmaterialatthehigher temperaturas ! I Itisapparentfromtheforegoingdiscussionthattitaniumanditsalloysmaybeformedboth atroomtemperatureandatelevatedtemperatureswithformabilitybeingimprovedusingthehigher ,, 70Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 71Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 temperaturesThedi=dvantagmofhotforming,thepo=ibilityofworkpi~econtaminationand therequirement forheatedtobling,arenotformidableandhotformingistodaymorewidelyused thancoldformingTableXXXlgivesacomparisonoftherelativeformabilityofrepresmtative~ titaniumalloysinvarioushotandcoldformingoperations 30MaterialPreparationConventionalcleaning,etching,andd=alingprwedurescanbe usedtoremovedirt,surfaceoxidizedlayers,and/orscalesfromtitaniummaterialsbeforefornsing ScalesandsurfaceoxidescanincreasethenotchsensitivityduringformingGrease,oil,andall residuesfromsolventsorfingerprintingthatmightbeasourceofchloridesmo~ovedbefore anyheatingoperationassociatedwithformingtoavoidapossiblestresscorrosionreactionParts requiringremovalofoxidesbyetchingorpicklingoperationsmustbeofsufficientgagetoallowfor thismetalremovaltreatmentThepicklingoperationmustbecarefullycontrolledtominimize localattackandunduedimensionalchanges Blanksandpartspreparedforformingbyoneormoreofseveralpossiblecuttingoperations suchassawing,nibbling,orshearingshouldhavetheworkededgasdeburredThescratchesresult ingfromthedeburringoperationshouldbeparalleltothematerialsurfaceTheedgasofshrinkand stretchflangesshouldbepolishedpriortoformingSharpedgesshouldberemovedandchamferrad edgesshouldbeavoidedCracksinshearededgasareundesirable,butmaybetoleratediftheyare inanareathatcanberemovedbytrimmingafterformingScratchesonthesurfaceofablankto beformedaredetrimentaltotheformabilityoftitaniumConsequently,allnecessarystepsshould betakentoreducetheoccurrenceofscratchesbeforeorbetweenformingoperationsInterleaving withpaperisoftenusedasanaidinminimizingsurfacescratching Whentitaniumistobeheat@inairforalongperiodoftime,scaleinhibitingcoatin%maybe usedtominimizesurfacecontaminationTheapplicationo!suchcoatingsareusuallycoveredby companyspecificationsandshouldbecarefullyfollowedInspectionprocedures,bothonincoming materialandonmaterialprocessedforforming,cannotbeoveremphasized 31ToolingThechoiceoftoolingmaterialsfortitaniumformingdependsontheforming operation,theformingtemperature,thenumberofpatstobeproduced,andcoatconsiderations coldformingoperations,whichstressthetoolingincompression,canbeconductedwithtools madefromepoxyfacedaluminumorzincalloysThelattercanbecastclosetothedesireddimen sionsandareeasyandcheaptomachineBecausemachiningisexpensive,thecoatoftoolmaterials isusuallyasmallpartofthetotaltoolingcosts Theabilityoftoolingtowiths&ndwearanddktortionattheformingtemperaturecontrolsthe numberofpartzthatcanbemadeonasetofhotformingdiesTheselectionoftoolingInaterials forhotfornsingisoftenammpromiaebaaedonexpectationsoftoolperformanceandthenumber ofpartstobeproducedbeforechangesin designorordercompletionoccurceramic~tarialsr cast iron,die~,nickelbasealloys,andstainlessstealshavebeenusedsuccessfullyforhotforming toolsGoodtooling%expensiveandisonlyjustifiedwhenclosetolerancesorlargeproduction quantitiesofpartsarerequiredThefollowingmaterialsareexamplesofsomeusedforh~tforming operations Operation““Materials Stretchfomsing Castceramic(Glasrock),H11,H15,HiSicasticon, AISI4130,andtype310stainfaasateel Brakeforming’H11,H13,andIncoloy802 YoderrollformingH11,H13toolsteels , 72,Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 DrawformingHighSicastironandIncoloy802 HammerandhydropressHighSicastiron,RA330stainlessSeel, forming InconelX,andIncoloy802 HotsizingoperationsMifdsteel,HighSicastiron,HighSinodularcast iron,H13,Types310andRA330stainlm steels,InconelX,HastelIoyX,andIncoloy802 Hotformingmaybeaccomplishedusingheatingoftheblankaloneorcombinedblankdie heatingThelatter,ofcoursa,isp”raferradIntegralheatingoftoolingforhotformingiscommon sincetemperancecontroliseasierandmorepracis6Dietemperaturesof4@to1500Fhavebeen usedanddependonthetitaniumalloytobeformed,theshapeofthepart,andtheforming methodDiesandplatensarefraquentlyheatedwithelectricitybecauseofitsfIexibility,easeof control,andcleanlinessInsulatingblanketsofvarioustypesarefraquantlyusedinconjunction withhotformingoperations 32Lubricants Lubricantsperformthreemainfunctionsintitaniumformingoperations: (1)theyminimizetheenergyofpressurerequiredtoovercomefrictionbetweentheblankandthe tooling,(2)theyreducegallingandseizingbetweenblankandtooiin9,and(3)theycontroltherate ofheattransferbetweenblankandtoolingasinhotformingFrictionisgenerallyundesirablesince itaccentuatesthedifficultyofsecuringuniformblankmovementoverthetooling Organic,nonchlorinatadoils,greases,andwaxesmaybeusedincoldformingoperationsas wellasthesoliddryfilmlubricantssuchasthegraphitesandmolybdenumdizdfidetypes ColloidalgraphiteiscommonlyusedinbothhotandcoldformingoperationsAtelevatedtem peratures,boundarytypeIubrica:ionse6mstobebestConsequentlyitiscommonpracticetouse thesoliddryfilmlubricantsinconjunctionwithoilsandgraasesforhotformingManysatisfactory lubricantshavebeenusedinformingtitaniumthattypicallyresultinreducingthecoefficientof frictionto020orlessandinturnthisresultsinlowtoolwear 33FormingMethodsThemanykindsofformingoperationscommonlyusadinmaking enditemsfromthebatterknownmetalsofcommerce,arealsousadinmakingpartsfromtitanium anditsalloysBasicallyeachoftheoperationsinvolvesdeformationbybendingorstretchingor combinationsoftheseandasearlierdescribedmightbedonehotorcoldHotforminggenerally affordsgreaterductilityandthereforegreaterformablli~Theoperationsinclude:brakeforming, stretchforming,deepdrawforming,trappedrubberanddrophammerforging,spinningandshear forming,dimpling,joggling,rollbendingandrollforming,tubabulging,andtubabendingAs mentionedprevirwaly,titaniumworkpiecesunderdeformationinthesevariousoperationsbehave muchlikethevariwsgradesofstainlesssteelGenerallythetitaniumalIoyshaveamorelimited formabilitythanthesteelssothatwhileallofthevariousformingmethodscanbeusedinmaking titaniumparts,cautiousapproachestotheformingmethodselectedshouldbeemployed 34FormingProcessPrecautionsTherearesevar~lspecificprecautionstobeobservedin formingtitaniumanditsalloysTheserelatetocontamination,notchsensitivity,anisotropy,strain ratesensitivity,UteBauachingerettact,andSimpleOverstraming Thecontaminationoftitaniumduringformingmaybeavoid&1oreliminatedasaproblem qufieeasilywhenitisrealizedhowreadilyitcanoccur,Inthehandlingofasreceivedtitanium stock,forexample,themereactoffingerprintingtoanyextentisconsideredpoorformsincethe chloridesoftheprintamightleadtoastresscorrosionprobleminsomefurtherprocessingstep SimilarlytheinkDrintinqonsomestcckandanyaccumulationoflayoutmarking,dirt,g~asa,etc, shouldbeeliminatedeariyhtheprocessingsequence 73 C[eaningprocedures,theuseofsolventsandDownloaded from http://wwweveryspeccom I I MILHDBK697A lJUNE1974 picklingoperationsforexample,shouldbecontrolledsoasnottointroducefurthercontamination ThMprmutionsare~WiAllyimpomantwhenhotformingisplannedDuringhotforming,the oxidationoftitaniumsurfacesiscertaintooccurtosomedegree,dependingonanycoatingsused, andseverityoftheexpoauretemperatureanddwelltimeThus,theeliminationofcontamination pickedupduringthehotformingoperationmustbecarefulIycontrolledtoo,bydescaling,pickling, ormachiningoperationsToinsuretheatteinmentofdesiradmechanicalpropeniea,contamination shouldbeminimizedthroughouttheentiresequenceof”formingoperations Titaniumalloysareperhapsassensitivetosurfacedefectsasanyofthehighstrengthmaterials withrespecttoeffecteonformabilityThescratchmarksoneurfaceathatcenappearduring handlingandthetoolmarksoncutsurfaces,edgesinparticular,canbethectressrisersthatresult inpoorformabilitySu¬ch~mumbeminimizdoreliminat4toachiweagoodformabiliW, andincriticeloperations,auchasatretchforming,thepolishingofedgaaisnotatooextremepre cautionarymeawreGenemlly,~ratch~,notcha,ordefwSorien@pamlleltothemaiorwrain axisofthewurkpieceareleasaproblemthanthoseotherwiseoriented B~usetitaniummillproductsareoftenaniaotropic,sectionsthataretobeformedshouldbe orientedinsuchawaythatthemaiordeformationoccursinadirectionofmaximumductility Forexample,instretchforming,blanklayoutshouldbeperformedsothatmaximumstretchwill &awompliAdintherollingorlongitudimlditiionpamlleltotiegrainInbending,thebend axiswouldpreferablebeperpendiculartothegraintotakeadvantageofthemaximumtensile elongationinthelongitudinaldirectionWhileitisrealizedthatpreferredmaterialorientations cannotbeachievedinsomeformingoperationsorinsomeparts,thelimitationsofductilityin aniaotropicproductsshouldbeunderstoodandaccommodatedSimilarly,thestrainratesensitivity andthevariationofthissensitivityamongvarioustitaniumalloysshouldbeunderstoodinselecting aformingprocessthatisthemostcloselymatchedtothematerialscapability ColdformingcanresultinalossofcompressiveyieldstrengthviatheBauschingereffectThis isaphenomenonwhereinthecompressiveyieldstrengthcanbeappreciablyloweredupon plasticallydeformingametalintension(Tensileyieldstrengthalsomaybedecreasedbyplastically deformingincompression)Titaniumalloysaresubjecttothisphenomenontovariousdegreesand seriousdegradationofpropertiescarsbeexperiencedincoldformedpartawheretheproblemhas notbeenanticipatedFigure18showsthedecreasesincompressiveyieldstrengthsforrepresenta tivealloysdeformedbyvariousamountsintensionInspiteoftheextentofthesestrength decreasesundercertainconditions,theyieldstrengthsmayberestoredbyasressreliefannealingor, ofcourse,byfullannealingorsolutiontreatingandagingifthosearestepsinpartmakingsubse quenttoforming,Stressreliefannealing,ahotsizingoperation,orafullheattreatmentofsome typefollowingamldformingoperationnotonlyeliminatestheproblemofthe8auschirsgereffect butminimizesoreliminatesproblemsofdelayedcrackingandat=corrosionThuswherecold formingisselectedinlieuofahotformingoperation,itiswelltoconsideranappropriatethermal exposuretoreconditiontheworkpiecetoinsureoptimumproperliea MachininqP&aasea 35GeneralSeveralyearsago,titaniumhadthereputationofbeingverydifficultto machinecomparedwithcommonconstructionmaterialsHowever,yearsofexperienceandm aeamhonvariousproblemshaveprogressivelyimprwedthesituationToday,toolsandtechniques areavailableformachiningtitaniumefficientyInfact,somemachiningoperationsgivemore consistentresultsontitaniumthantheydoforsomeateelsAbonusfactoristheeaseofattaining goodsurfacefinidsesRoughnessvaluesaslowas20to30microinchescanbeobtainadonsome pans 74Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 0 40 o~5 ElongationbyStretching,percent Figure18EffectofColdStretchFormingontheCompressive YieldStrengthsofVariousTitaniumAlloys Generally,machiningproblemsfortitaniumcerroriginatefromfoursources:highcutting temperatures,chemicalreactivityandabrasivenesswithtools,andarelativelylowmodulusof elasticityAbuiltupedge,however,doesnotformontoolsusedtomachinetitaniumAlthough thisphenomenonaccountsforthecharacteristicallygoodfinishonmachinedsurfaces,italso leavesthecuttingedgenakedtotheabradingactionofthechippeelingofftheworkInaddition, titaniumproducesathinchip,whichflowsathighvelocityoverthetoolfaceonasmalltool+hip contactareaThis,plusthehighstrengthoftitaniumproduceshighcontactpressuresatthetool chipinterfaceThiscombinationofwerrtsandthepoorheatconductivityoftitan~umresultsin unusuallyhightooltiptemperamres Thecuttingtemperatureachievedatthetoolpointdependspertlyontherateatwhichheat isgenerated,fromthetoolforcesinvolved,andpertlyonherateatwhichitisremovedbythe chip,thecuttingfluid,andbyconductionthroughthetoolTheheattransfercharacteristicsofthe chipandworkmaterialdapendonthermaldiffusivity,whichisafunctionofdensity,specificheat, andthermalconductivitySincetitaniumexhibitspoorthermaldiffusivity,toolchipinterface temperaturesarehigherthantheywouldbewhenmachiningothermetalsatequaltoolstresses lbhighertemperaturesinthecuttingzoneleadtorapidtoolfailureunlessefficientcoolingisprc videdbysuitablecuttingfluids Thestrongchemicalreactivityoftitaniumwithtoolmaterialsathighcuttingtemperatures andpressuresinducesgalling,welding,andsmaaring,sinceanalloyiscontinuouslyformedbetween 75Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 the titaniumchipandthetoolmaterialThis alloypassesoffwiththechip,producingtoolwear Titaniumreactivityalso shoti’up whenthetool dwellsinthecut,evenmomentarilyasindrilling Thesurfaceoftitaniumusuallycontainsahighcontentofoxygen,especiallyifithasbeen exposedtoairathightemperaturesThisoxygenenrichedlayerishardandabrasive,andcancause dullingoftoolsTherefore,itisoftendesirabletocleanthesurface,priortomachining,bysand blastingorbychemicaldeacalingWhenthisisnotpossible,thefiratcuttakenisusuallyaheavy one,tocausethetooltopenetrateunderthahard“skin”ofoxygenenrichedtitaniumAbrasion bysurfacecontaminationorscalecannotchcuttingtoolsatthedepthofcutlineConsequently, thisisanotherreasontoremoveoxygenenrichedsurfacelayers,ifpossible,priortomachining operations Thestiffnessofapart,determinedbytheahapeandtheelasticmodulusofthealloyworkpiece isanimportantconsiderationindesigningfixturesandselectingmachiningconditionsfortitanium Sincetheelasticmodulusfortitaniumisonlyabouthalfthatofsteel,atitaniumpartmaydeflect saveraltimesasmuchasasimilarsteelparsduringmachining,creatingtolerance,toolrubbingand othertoolmiacuttingproblems 36MachiningRequirementsSuccessfulmachiningoftitaniumanditsalloysrequiresthe useofhighqualitymachinetoolsandcuttingtools;anabsoluteminimumofvibration;rigidsetups; andobservanceofrecommendedmachiningpractices Machinetoolselectionisaprimaryfactor;justanymachinewillnotdo[nfact,machine toolsusedformachiningtitaniummustbeinexcellentconditionandpossesscertainbasicattributes thatinsurevibrationfreeoperationsTheaaincludedynamicbalanceofrotatingelements;true runningspindles;snugbearinga,slid=,andacmwa;sturdyframes;widespeed/feedrangas;and amplepowertomaintainspaedthroughoutcuttingUndersizedorunderpoweredmachines shouldbeavoidedCertainlocationsofmachinesnearoradjacenttoheavytrafficalsocaninduce unwantedvibrationandchatterduringmachining RigidityofoperationisaveryimportantconsiderationGenerally,itisobtainadthroughthe useofadequateclampingandbyminimizingdeflectionofworkandtoolduringmachiningIn milling,thismeansstrong,shorttools,machiningcloaetothetable,rigidfixturing,frequent clampingoflongparts,andtheuseofbackupsupportforthinwellsanddelicateworkpiecea Rigidityinturningisachievedbymachiningclosetotheapindte,grippingtheworkfirmlyinthe collet,andprovidingsteadyorfollowrestsforslenderpartaDrillingrequiresshortdrills,positive clampingofsheet,andbackupplatesonthrwghholes Cuttingspeedisimportantinallmachiningoperationsandisaverycriticalvariablefor titaniumCuttingapeedhaaapmnouncadaffectontookhiptemperature:excessivespeedscan causeoverheatingandshorttoollifeConsequently,speedsarelimitedtorelativelylowvalues, unlessadequatemolingcanbesuppliedatthecuttingsiteHowever,allmachiningvariablesshould becarefullyselectedtoeffectoptimummachiningrates AllmachiningoperationsmquiraapositiveuniformfeedachievadmechanicallyThecutting toolshouldneverdwellorrideinthecutwithoutremovingmetalAsanaddedprecaution,all cuttersshouldberetractedwhentheyarereturnedacrossthewotkThecuttershouldbeupto apeedandshouldmaintainthisspeedasthecuttertakeatheload Insummary,correctmachiningsetupsfortitaniumrequirestrong,aharpcuttingtools; positivefeeds;relativelylowcuttingspeeds;andcertaintyp~of cuttingfluidsImpropercutter 76Downloaded from http://wwweveryspeccom ~MILH08K697A 1JUNE1974 1 rigidityand/orgeometrycancontributetovibrationSpindlespeedsandfeedsshouIdbeverified oneachmachinetoensurecorrectcuttingconditions,sincesmallchangesincuttingconditionscan Iproduce{argachangesintoollifeAllmachiningvariablesshouldbeCerefully:selectedtoeffect optimummachiningrates i“ 37Tooling~enmachiningtitanium,itisn~e~Wto&lmtatmlthatretainsitshard n“&sathightemperatureaSintered~rbidetoolsareagoodchoicekauwoftheir’’redhardness” Excellentresultsareusuallyobtainedwiththesebut,becauseoftheirbrittleness,carbidetoolsmay chipandspallwhentitaniumchi~weldtothemMachirs@gofti~niumwithcarbidetoolsrequires rigidmachinesandarigidsetup“Throwaway”carbideinsertsarethemomeconomicalcutters @uaeoftfseirfrighproductivityWiththeuseofinserts,higherrotetionalspeadsandheavier feedscanbeused;andnotimeislostpickingupcutsAnotherreasonwhythe“throwaway”inserts /aremoreeconomicalthancemented tYPea, isthatthecostofnewormultipointinsertsislower ‘thanthecostofratippingorregrindingGrade883aequivalrhtcarbidetipshaveperformedbest ontitaniumalloys,bothforroughingcuts”=nd~rsishipgoperationsCastalloysteels,whichfillthe gapbetweencarbidesandhighspeedsteels,areusedwhenconditionsdonotpermittheuseof carbides Titaniumcanbecutusinghighspeedsteeltools;however,productionrateisloweredNever theless,forinterruptedCUSS,highspeedtoolsmaybethebestchoiceLivecentersarealwaysused tosupperstheworkbecauseofseizingwhen“fixedcentersareemploved ~38CoolantsTitaniumcanbemachineddfiwithgoodresults;howwer,muchbetter resultswillbeobtainedwhenpropercoolantsareusedThecoolantshouldbedirectedascloseas possibletothepointoftoolcontactMistcoolantor“throughthewheel”coolanthasproven excellentforgrindingordrillingtitanium Cuttingfluidsareusedontitaniumtoincreasetoollife,toimprovesurfacefinish,tominimize welding,andtoreduceresidualstressesinthepartSolubleoilwateremulsions,watersoluble waxes,andchemicalcoolantsareusuallyusedatthehighercuttingspeeds(75tolCSOfpmandup) LowviscosiWsulfurizedoils,chlorinatedoils,andsulfochlorinatedoilsareusedatlowercutting speedstoreducetoolchipfrictionandtominimizeweldingofchiptotoolCuttingoilsmayhave eithermineraloilormineraloillardoilbasesManyfluidsthatimprovemachinabilityarecomplex, oftenproprietary,andsometimescontainunidentifiedactivecompounds(Chlorinatedoilcumin9 fluidsposeadangerofstresscorrosionfromchlorineresiduesTheseresiduesshouldbepromptly removadwithanorrchlorinateddegreaser)Machininghandbooksfrequentlyidentifyspecific coolantsforuseinspecifictitaniummachiningoperations 39MatalRemovalTechnique& Bothconventionalandunconventionalmetalremoval techniquescanbeusedinmachiningtitaniumConventionalmethodsincludingmilling,turning, boring,drilling,tapping,reaming,sewing,broaching,andvariousabrasivecuttingoperationshave beendwelopedfortitaniumUnconventionalmethods&chaselectrochemicalmachiningand grinding, chemicalmilling,andelectricdischargemachining havebeenadvancedtoahighStateOf efficiencyinworkingtitaniumEachmethodhasconnectedwithitamultitudeofprocedural detailswhichshouldbefollowedtoobtainthebestresultsDuetothelargenumberofinstructions andrecommendationsforeachprocessitisimpossibletocoverthemthoroughlyinthishandbook However,highlights concerning~e~alofthecommonly usedmetalremovaltechniquesarecited a MillingBreakingorchippingofmillingcuttersremainsaproblemApartialsolution istouse“climbmilling”,rigidmachines,andarigidsetupProgressivetoolchippingandwear producesasurfacefinishdeteriorationandIOSoftoleranceOtherproblemsfoundinmilling 77Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 includeheat,deflection,andabrasionInadditionto using“climbmilling”andrigidsetups, millingmaybedone moreeucbessfullywhentuningspaadislow,toolanglespromoteunhampered chipflow,andtoolsareusedthatareofrelativelysmalldiameterbutwiththelargestnumberok teeth bDrilling Successindrillingtitaniumisobtainedbyadoptinga“keepdrilling”concept, usingmechanicalfeedsThedriIIshouldnotbeallowedtoride,andlowspeedsandhea~feeds shouldbemaintainedThedrillshouldbesharpandasshortaspossibleWhenfeedingtheworkby hand,gallingandseizingwilloccuriftherateoffeedisnotconstantThecoolantshouldconsistof asulfurizedorchlorinatedtypemixedwithmineraloils,orsolubleoilsandwaterandshouldbe suppliedtothetuningzoneinapositivemannerThegallingactionoftitaniumduringdrilling, whichmaybeaccentuatedbyhighcuttingtemperaturesandpressures,resultzinrapidtoolwear, outofroundholes, taperad holes,orsmearedholes,withtapbreakagealikelyconsequenceifthe holesaretobethreaded, cTappingTappingscrewholescanbetroublesome,particularlyintappingblindholes wherechipscanbuildupThelargestpossibletapdrillshouldbeused;thosewithspiralpointaare thebestArigidpowersetupisbenerthanhandtappingVeryslowtappingspeedswithhighly activecuttingfluidsaremosteffective d SawingTitaniumcanbesawedbyusingacoarsepitchbladehavingtwotosixteeth perinchBladeswhoseanalysisishighinmolybdenumcontentoutperformgeneralpurposeblades BladetensionshouldbehighHeavyfedsandslowspeedsarebest;andacoolantshouldbeused SomedifficultyisencounteredinsewinglargebilletsDuetotherelativelyheavyfeedpressures requiredtokeepthebladecuttingthematerial,andbecausethebladeissubjecttowear,itisdiffi culttomaintainastraightcutIncuttingbilletdiametersover8inches,groovingthematerial I/Einchwidetoalinchdepthonthecircumferencehelpstoallwiatethisproblem,asthisre ducesthediameterandhelpstoguidethesawbladeMaximumrigidi~isneedadwhensawing titaniumandisfavoredbyusingthewidestandthickestcuttingbandpermittedbythebandwheel andanyradiiofcutthatmightbedesired e TurningandBoringTheseoperationsandfacingareessentiallythesameandofferno unusualdifficulties:Theygivelesstroublethanmilling,aspaciallywfsencuttingiscontinuous ratherthanintermittentHowwer,theproblemsofhightool~tiptemperatures,gallingandabrasive reactionwithtoolmaterials,andlackofsatuprigiditycanbeseriousifthegeneralrulesfor titaniummachiningarenotfollowedLowcuttingspeeds,feedstoresultinconstantmetalre moval,andadequatecoolantdirwedpositivelytotheworkzonearerecommendedforbeatra Suka f AbrasiveCuttingAnothermeansofcuttingtitaniumistouseabrasivecuttingbelts, discs,orcutoffwheelsoverheatingandcontamination,oftheworkisprwentadbygeneroususe ofcoolantsTitaniumanditsalloyscanbecutabrasivelyataboutthesamerateeshardenedhigh spaedsteal%ModeratelylightcutsarerecommendedSmearingofgroundtitaniumsurfac~can resultfromabrasivetooll~ding,andinadequaciesofthesatuprigidity,cuttingspaedinadequacies andpoortool‘characteriatlcaThaaeproblemscanbeminimjzedbychoos”mgtherightabrasive tmlandrenditionsAluminum,oxideandsiliconcarbideabrasivetoolsareavailableinavarietyof gritsizes,hardnassaeandbondmaterialsOptimumspaadsandfeeds(generallylight)areraCom mendadforeachtypeAsinothermachiningoperations,cuttingfIuidsandtheirproperapplicetion totheworkpiaceareveryimportantforthesuccessfulabrasivecuttingoftitanium 9ChemicalMillingThisunconventionalmethodformetalremovalreferstoshaping, fabricating,machining,orblanfcingofmetalpartstospecificconfigurationsbycontrolledchemical 78 IDownloaded from http://wwweveryspeccom MILHDBK697A I ! 1JUNE1974 dissolutionwithsuitableetchantsorreagentaChemicalmillingisparticularlyusefulforremoving metalfromthesurfaceofformedorcomplexshapedparts,orfromthinsectionsThemethod providesanincreasedcapabilityandflexibilityinthefabricationofpartsandofferssavingsinlabor time,andmaterialsThechiefdrawbackistheverycarefulmntrolrequiredinmaintainingthe desireddimensionaltolermcesandthecompositionoftheacidetchanttopreventexcessivehydro genpickup Theacidetchantsusedforthechemicalmillingoftitaniumarepropriem’~aqueoussolutions containinghydrofluoricacid(HF)plusotheroxidizingacidsandadditivestoinhibithydrogen pickupandtoenhanceetchingcharacteristicsEtchratasrangefromabout05to50roilsper minute(1to15usually)Timeofimmersionintheacidsolutionofcoursedeterminesthedepth ofcutDepthofcutlimitationsareabout05inchfortitaniumandminimumwidthsOfCUtSthat canbemachinedareaboutthreetimestheetchdepths(duetothesidewaysetchingataboutthe samerateas,down)Dimensionaltolerancescanbeheldtoabotit*2mikandtypicalaurface roughneasvaluesproducedrangebetween15to50microinchasEtchantsareusuallycirculated intheetchtanksandpartsaremovedandturnedtopromoteuniformmetalremovalEtchanta akiomaybesprayedagainsttheworkpiecewhere,f,orexample,thepiercingofthinpartsisdesired Metalcanberemovedfromanentirepartwithchemicalmillingorelseselectivemachining canbeaccomplishedbyusingmaskingSimultaneousetchingofapartfrombothsidesispossible NoelaborateholdingfixturesarerequiredManypartacanbemachinedatthesametimewithof coursatanksizeandsolutionvolumelimitationsMaskingmaterialssuchasvinylpolymersand neopreneelastomersareoftenappliedinmultiplecoatsandbakedon(200to300F)andpatterns desiredmaybesubsequentlyscribedThemanualpeelingofthemasktoexposetheareatobe etchedfollowsPatternsalsomaybedevelopedbysilkscreenandphotographictechniquesAfter machhsing,themaskantscanbeeasilyremwed”bymanual“peelingorbyimmersioninwlvents ’ I 40GeneralManyindividualjoiningprocessesmaybeusedinassemblingatitanium structureTheprocessesincludeweldingofseveraltypes,brazing,soldering(rarely),solidstate adhesivebonding,andmechanicalfasteningOfthesejoiningtypes,onlyweldingismarkedly I sensitivetothechoiceoftitaniumalIoyTheremainingprocessescanbeappliedtoanyofthe alloyswithaboutthesamedegreeofau&essTherearemanyfactorsaffectingthechoiceofa joiningprocassandtheseincludeconsiderationofthemetallurgicalcompatibility,strengthrequire menta,costrequirements,andpermanencyofthejointEachprocesihasitsadvantagesanddis advantagesandfew”fixedrulesareapplicableinselectingajoiningmethodSincejointrequire mentaarequitevaried,thishandbookdoasnotattempttocompareadvan~gesassociatedwiththe variousmethodsInstead,briefd~riptionsoftheprocaszes areofferedwhichemphasizethe majorrequirementsandprecautions Beforediscussingtheseveralindividualmethodsforjoiningtitanium,someofthevarious characteristicsoftitanium,whichstronglyaffectjoiningtechniquesarereviewed aTitaniumanditsaltoyshaveahighaffinityforoxygen,hydrogenandnitrogenat elevatedtemperatures,andcanbecomeseverelyembrittledbytherisatrelativelylowIavelsof concentrationThereareseveralpossiblesourcesforthecontaminants bTitaniumalloysaresusceptibletostresscorrosionbysodiumchloride(eg,from fingerprints)attemperaturesabove600F I 79Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 cMoltentitaniumishighlyreactivewithmostmaterials,includingallthecommon’ refractories dExc*ivealloyingwithotherstructuralmetals(eg,steelandaluminum)greatlv=dukm theinipactstrengthoftitaniumduetotheformationofbrittleintermetelliccompoundsandex cessivesolidsolutionhardening eTitaniumexhibitsahighcoefficientoffriction,andhaspoorwearandgallingcharacter istics f Titaniumisnobleinmoatgalvaniccouples 41WeldingTechnologylmpotiantfactorsforweldingtitiniumconcernmaterialand processsuitabilitiesfitaniummaterialssui@biliWinvolv~Modistinctcriteria:(1)Theabilityto physimllyproduceawldedjoint,and(2)mtitiactoWpetiorm_agceofthejointinwwiceVery fewtitaniumalloysfailtomeetthefirstwhilethesecondmaybesatisfiedbyproperalloyselection Commerciallypuretitaniumandthealphatypealloysdonotrespondtoheattreatment,andtheir mechanicalpropetiiesamaff~tdonlyslightlybyvariationsinmicrommctureThesaalloysare medilyadaptedtoalltypesofweldingoperationsDependingonalloycontent,themachanicel ‘propeniesofalphabetaalloysmaybegreatlyaffectedbyheattreatmentandvariationsinmicro structureSpwiafmnsiderationisrquiredinselwtingalpha&taalloysforweldingapplimtions, becetsseaomealloysareembrittledbyweldingoperationsGenerally,increasedbataatabilizer contentinalphabetatypealloysdecreasestheauitabilityofthealloyforweldingWeldedjoints inbaaalloysareductileintheaswldedcondition,buttheirstrengthsarelowWhenheat trestedtoincreasestrength,weldductilitydecreasesThus,whereachoiceisavailable,alpha titiniumalloysampreferredforweldtia=mbli~,withalphabe@andbetaalloysbeingless desirabledependingupontheultimatepropertiesrequiredinthejoint Titaniumweldingprocesssuitabilityisrelatedtocost,requirementsforjointstrengthand Ieaktightness,andconsiderationsformillproductfohit,componentconfiguration,andjointdesign andlocetionTheweldingprocessesthatmaybeusedontitaniumassembliesincludefusion welding,resistanceweldingandexplosivewelding,thoughlasspopularthantheseothermethods isuwdintheclddingofshWtandplateandtheinteriororexteriorofcylindemInthefirst categoW,theprocessesofintergasshieldedtungstenarc(GTAforgastungstenarc),inertgas ahieldedmetalarc(GMA),intergasshieldedarcapot(arcspot),andelectronbeam(EB)welding arepopularLaserweldingisbeingdevelopedIntheaecondcategory,spot,rollapot,andaeem weldingaretheclassicprcscesseslnaddition,upaetweldingprocessedmaybeuaedtoassemble SpecialconfigurationsForexample,f)afiwlding;afomofmi@ncewlding,jsuWtoprduce jointainbera,forgings,rolh?drings,andtubingInductionpressurewelding,gaspreasurewelding, andhighfrequency(ultrasonic)weldingalsoarecommonprocesses 42FusionWeldingThisisageneraltermoftenusedto’titegorizeweldingprocessesin wftichjoiningisaccomplishedbyheatingtothemeltingpointusinganexternalheatsource Titaniumfusionweldingisaccomplishedusinganelectricarc,plasmaarc,oranelectronbeamto meltthemetalGTA,GMA,ArcSpot,andEBfusionweldingprocessesfprtitaniumhavemuchin commonandthepointsdiacu~dinthissectionrelatetoall”ofthemFactorstobeconsideredin fusionweldinginclude:compositionofbasemetal,cleaningofthe”partetobejoined,jointdesign, fillerwire,inertgasanditsapplication,tooling,heatinput,distortion(shrinkageandresidual stress),residualstress(property values), welddefectsinspection,andSubsequentjOintPerform anceObviouslyaweldinghandbookwouldberequiredIOdescribeallthesevariablesandtheir interrelationshipsHere,onlythehighlightsarementioned 80Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 aBasemetalcompositionandconditionAlloyselectionfortitaniumweldinghasbeen previouslydiscussedPointstobeaddedincludeconcernsregardingcompatibilitywiththeheat treatedconditionofthebasemetalbeforeandafterweldingandcontaminationthatmightbe incorporatedinthebasemetalpriortoweldingSinceanyfusionweldingcycleresultsIiiaweld zoneofas100[“Y 5s< 100 &~ () + ‘%\Inair 80i~ 60 40{“ In36% NaCl 20 0 3456,7 Figure20AluminumContent,percent EffectofAluminumContentontheStrength, Toughness,andStressCorrosionSusceptibility ofTi15MoO5VBawAlloys(Nom(nally 1000PPMOxygen) ofmolybdenumiscurrentlybeingconsideredasacompositionalimprovementforcertainalIoysin ordertoreducetheircrackingpotentialinsaltwaterTheTi6Al2CblTaO8Moalloywas dwelopedonthisbasis,Downloaded from http://wwweveryspeccom , Alloysthathaveshownsomedegreeofsusceptibilitytorapidcrackpropagationinsaltwater arelistedbelow,butnotntiesarilyinorderofsusceptibility: UnalloyedTiwith032percentoxygencontent Ti5Al25Sn ITi6A14v Ti6Al6V2Sn TF7AI3M0 TF8AIlMOlV Ti8Mn Ti13VllCr3Al Thereprobablyisnosuchthingasatitaniumalloywhichiscompletelyimmunetothesaltwater stresscorrosionreactionalthoughsomematerialsarehighlyresistanttoitTheseinclude: UnalIoyedTiwithlowoxygencontent Ti4Al3Molv TL6AI2M0 Ti6Al2CblTa08Mo Ti2Al4Mo4Zr(experimental) Ti5Al2Sn2Mo2V(experimental) Ti115Mo6Zr45Sn(assolutiontreatad) ThedegreeofsusceptibilityofsometitaniumalIoystostresscorrosioncrackinginsaltwater canbechangedbytheheattreatmentgiventhematerialIngeneral,rapidquenchingfromtempera turesabovethebetatranaustendstoimproveresistance,whiIeaginginthe900to1300Frange tendstodecreaseresistancetoacceleratedcracking Alloysoftitaniumcanalsosufferstresscorrosioncrackingatambienttemperaturesunder certainotherspecificrenditionsFailureshavebaenencounterinredfumingHN03(asmen tionedabove),inN204,andinHCIInaddition,certainalloyshaveshownsusceptibilitytoatress corrosioncrackinginchlorinatedhydrocmtmnsolventsCrackswillinitiateandpropagat6onlyif therightcombinationofstress,metallurgicalhistory,andenvironmentalfactorsispresent InthecaseofredfumingHN03,crackingislimitedtoenvironmentscontaininglass“tian 15%waterormorethan6%NOThecrackingisthoughttoberelatedtotheselectiveattackof J smallamwntsofbetaphaseanoranenrichedalloyzonealongthegrainboundariesInaddition, thisattackleavesfinelydivided,highlyreactiveparticlesoftitaniumwhichwilldatonataunder slightshockAddingwaterabove15%totheanhydrwsacidgreatlyreducesthechancefor stresscorrosioncrackingendpyrophoricreactions , FailureoftheTi~A14ValloyintankageapplicationshasomuredinN204containingoxygen andchloridesasimpuritiesWiththeoxygenreplacedbygreaterthanOCKpercentNOasan inhibitor,failuresarepreventedThisattackmaybetheresultofincompleteoxideformationat themetalsurfaceslipplanes,orbypreferentialabmrptionQfthechlorideionCurrantspecifica tionsforpropellantgradeN204requiretheNOcontenttobebetween04and08percent Methylalcoholisanothermediumthatinitiatesatrasscorrosioncrackingoftitaniumandits alloysWithsmalladditionsofbromine,HCI,orH2S04tomethanol,evenunalIoyedtitaniumcan bemadetocrackWithchemicallypuremethanol,thesusceptibilityoftitaniumalloysvaries, dependingonalloy,heattreatment,andstresslevelForexample,solutiontreatedandaged , 98Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 I Ti6Al4Vevincessomefailuresatabout70percentofitsyieldstrength,whileannealedTi6Al4V ctacksonlyonstressihgnearitsyieldpointTheTi6AllMo1Valloyappearsmoresusceptible StresscorrosioncrackingalsotiursatelevatedtemperaturesLatein1955,wtia~ecracking wasobservedonTL6AI4Valloysundergoingcreeptestingat700FThecrackingwasattributed atthattimetosurfaceembritdementinducedbyoxidationLater,itwasestablishedthatcracks wereoftenassociatedwithfingerprintaFollowuptastingofspecimensunderstressincontactwith 1pureNaClproducedcrackingate@atedtemperaturesThisphenomenonhasbecomeknownas hot+altstresscorrosioncracking Whilecrackingoftitaniumalloysincontactwithhotsodiumchloridehasbeenobtainedin Iaboratorystudiasattemperaturesaslowas450F,thisphenomenonhasnotbeenofficialIyr~ portedasthecauseoffailureofatitaniumpartinserviceItshouldbepointedout,however,that, wi[hthepossibleexceptionofjetenginecomponents,titaniumpartsinservicearenotusually subjectedtocombinationsofstressafrdtemperatureintherangefoundtoinducecrackinginthe laboratoW ~StudiestodatehaveindicatedthatseveraltypesofchloridesaltswillinitiatefailureHowever, NaClnowappearstobemostreactiveOxygenorareducibleoxide(Ti02)mustalsoapparently bepresentforcrackingtooccur,althoughthecriticalconcentrationofoxygenislow(1to10 micronsHgpressure)Watermayalsoenterintothereactionandappearstobenecessary,although itscriticalconcentrationislow(ontheorderof10ppm) I Recentstudiesonthemechanismhaveshownthatagasphasereactioncanoccur,whereas previouslyaIiquidphasereactionseemedtoberequiredThemechanismapparentlyinvolves NaCl,02,H20,andreactionproductsofTiC12,NaOHandTi02Amorerecenttheoryproposes thatNaClandwaterreacttoformNaOHandHCITheHCLreactswiththeprotectiveoxideson thesurface,formingunprotectivechloridesThehydrogenreleasedbytheattackoftheexposed I titaniumisthenbelievedtodiffuseintothemetaltocausesubsequenthydrogenembrittlement Itappears thatmosttitaniumalloysaresusceptibletosomedegreetohotsalt stresscorrosion crackingThealphaphasealloys,suchasTi5Al25Sn,areapparentlymostsusceptibletoattack Thealphabetaalloysarelesssusceptiblebutthedegreeofsuscepti~litymayincreasewithin creasesinaluminumcontentForexample,theTi6AllMelValloy(bothasmillannealedand duplexannealed)isverysusceptibleHowever,theTi6Mnalloy,whichcontainsnoaluminum,is alsosusceptible AlloyswithintermediateresistanceareTI6AI4V,li6Al6V2Sn,andTi3AlllCr13V AmongthemostresistantalloysareTL4AI3M0lV,Ti25AlllSn5ZrlMo92Si,andanexperi mentalTi2Al4M04ZrallovVariationsinheattreatmenthavebeenfoundtoaffectthereactivity ofmanyalloysalsoTableXXXIIlistsapproximatestr~temperaturethresholdsforseveral titaniumalloys TheuseofcertaincoatingsonatitaniumsurfaceshowspromiseofprotectionSurface coatingsofnickelplate,aluminumplate,andzincplateshowpromiseofdelayingattackwhenthe cogtingisnonporousInonestudy,flamesprayedaluminumandnickelandelactrolassnickel wereporousandnotveryeffective,whilehotdippedaluminumgavegoodprotectionInother work,promisingresultswereobtainedwithaduplexnickelcoatingInviewoftheroleofoxygen (evenasTi02)onthehotsaltcracking,itisnotbelievedthatanodizedfilmswilloffersatisfactory protection: 99Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 TABLEXXXII ,APPROXIMATETHFIESHOLDSFORSTRESSCORROSION CRACKINGOFTITANIUMALLOYSINHOTSALT NominalCompcrcition,1W–HrThrecholdStress,ksi WC%Condition550600650700750800850900950 Ti5Al25SnAnnealsd 2830—15—1020 ————— 15 —— Ti8AllMolvAged Annealsd Ti25AllMc10Sn5ZrAged TMAI3MCIIVAgsd Annealed ——————— 25 2555––2320 — — 18 —— ————— 70––4035 ——— —— 9525–– e478––2825 1549 — ———— —— — Ti6A14VAced — 956525 30 w50–22––12 1S2415 —— — — Anotherphenomenonthatiscloselyrelatedtostresscorrosioncrackingisthatofliquidmetal embrittlementManyalloysywems,includingtitanium,hwebeenfoundtoexhititbrittlefailure whenincontactwithspecificlowmeltingpointmetalsInthecaseoftitaniumalloys,molten mdmiumwill=umcmcking(egtienusdasacoatingontitaniumfaaenem)Mercuryand mercuryamalgemsalaoinitiatecrackingHowwer,inthiscase,plasticratherthanelasticdeforma tionisrequiredtoinducecrackingFurther,ithasbwnfoundthatsilverwillmusecrackingof stressedTi7A14M0andTi5Al25Snalloysattemperaturesof650Fandabove 59CreviceCormsicmCrwicecorrosionoftitaniumanditsalloyshasbwnshowntoomur inchlorideaaltablutionsatelevatedtemperatureThisattackoccursabove200F,withincreasing frequencyfrom300t0400FAcidandneutmlmlutions~usethegreat~wXeptibiliW,tiereas noattackhasbeenobservedatpHof9ormoreCreviceattackoccurswithaboutthesamefre quencyamongunalloyedtitaniumandthecommontitaniumalloysThetitaniumalloywithabout 02percentpalladiumprovideaincreasedresistancetocreviceattack,butittooisattackedafter longtermexposureatelevatedtemperatureAcomparativey’newalloy,Ti(12)Ni,alsois resistanttocrevicacorrosionWhilethemechanismisnotcompletelyunderstood,microcrevices, lackofoxygen,andhydrideformationmaybeinvolved 60GalvanicCorrosionInmostenvironments,theelectromotivepotentialofpassive titaniumisquitesimilartothatforMonelandstainlesssteelsTherefore,galvaniceffectsarenot likelytooccurwhentitaniumalloysarecoupledtothesematerialsOntheotherhand,lessnoble materialssuchasaluminumalloys,carbonsteels,andmagnesiumalloys,maysufferaccelerated attackwhencoupledwithtitaniumTheextentanddegreeofgalvanicattackofadissimilarmetal coupledependsontheenvironmenttowhichthecoupl,eisexposed,andontherespectiveareasof eachmetaliiwolved,eg,iftitaniumisthecathodicmemberofamuple,%rsdiftheareaofthe anticmemberissmallerinrelationtothetitanium,theninacorrosiveenvironmentseverecor rosionoftheanodicmembercouldbeexpectedOntheotherhand,leasattackwillbeevidentif theareasofthetwometalsarerwersedSuchattackcanbeprwentedorminimizedinmostcases byprotectivepaintsandothertreatments,whichincludemodifyingtheenvironmentorinsulating thedissimilarmetalsfromdirectcontactwitheachother I 100 iDownloaded from http://wwweveryspeccom SECTION IV ‘BIBLIOGRAPHY I Pertinentreferencestothevariousw“bjectadescribedinthishandbookarelistedaccor~hgto thetopicalparagraphnumberingsystemusedTheTableofContentamaybeusedasaguidetothe I subjectscoveredInsofar aspossible,thereadilyavailablereferencesarelist@d,althoughinseveral I cases, referencesthatfullydescribethesubjectsofinterestaredifficultto”obtainGovernmental ~ librariesandthevariousinformationservicesmaybeofassi!kanceinlocatingsomeQfthe 1 referencescited 1 TitaniuminEngineeringDesign Williams,SC, ReoorlonTitanium,TheNinthIndustrialMetal,Bnmdage,Story andRose,Research“Reports,SeriesA6,1965,NewYork AerospaceStructiwalMetalsHandbook;Volume3,AFML–TR68115,Rwised December,1972,JWolf,Coordinatirig”Editor,W’F1Brown,JrChiefTechnical Editor,MechanicalPropertiesDataCenter,BelfourStulen,Inc,TraverseCity, Michigan MetalsHandbook,8*Edition,Volume1,AmericanSocietyfor’Metals,Clwelafld, Ohio1961, 2:TitaniumAlloyAvailabilityDesignations“ TitaniumAlloysHandbmk,MCICHB02;December,1972,,Metals,endceramics InformationCenter,Battelle’aColumbusLatnxetories,Columbus;Ohio DistributedbyNationalTechnicalInformationSr@ce,USDeptofCommerce, Springfield,Virginia(AD758335) ‘“ArmcoTitiniumandT~niumAlloys”,timmercialbrochure,ArmcoSteel Corporation,AdvancedMaterialsDivision,Baltimore,MaWland “BaaicDesignFactsAlxsutTitanium”,Commercialb“tiure,RMIcompany, Niies,Ohio,1971 “HowtoUseTitanium”,Commercialbrochure,Titanium”MetaisCorporationof America,WeatCaldweii,NJ,1970 101Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 3AvailabilityofTitanium–FormpandSi& “MaterialsSelector73”,MaterialsEngineering,~(41,MidSeptember,1972, pp173175 “Data Book”,MetalProgress,104(1),MidJune,1973,PP8687 Williams,SC,ReportonTitanium,TheNinthIndustrialMetal,Brundage,Story andRose,ResearchReports,SeriesA6,NewYork,1965 TheScience,Technology andApplicationofTitanium,Proceedingsofaninter nationalConferenceoraanizedbytheInstituteofMetals,TheMetallurgicalSociety ofAlME,andAmericanSocietyforMetals,inassociationwiththeJapanInstitute ofMetalsandtheAcademyofSciences,USSR,PergamonPress,NY,1970 TitaniumAlloysHandbook,MCICHB02,December,1972,MetalsandCeramics InformationCenter,8attelIe’sColumbusLaboratories,Columbus,OhioDistributed byNationalInformationService,USDeptofCommerce,Springfield,Virginia (AD758335) I 4–B 9–lo 1117TitaniumMaterialsSpecifications DepartmentofDefenseIndexofMilitarySpecificationsandStandards,Part1 Alphabeticallisting,Part2NumericallistingSubscriptionitemavailablefromthe SuperintendentofDocuments,GovernmentPrintingOffice,POBox1533, Washington,DC20013 IndexofAeromaceMaterialSpecifications(AMS)publishedbySocietyofAuto motiveEngineers,Inc,2PennsylvaniaPlazaNewYork,NY10001,May,1973 IndextoASTMStandardspublishedbyAmericanSocietyforTeslingandMaterials, 1916RaceStreet,Philadelphia,Pennsjdvania19103(annualpublication) SpecificationRequirements Applicablespecificationsandstandards NonspacificetionMechanicalPropeRiea AerospaceStructuralMetalsHandbook,Volume3,AFMLTR6B115,Revised December,1972,JWolf,CoordinatingEditor,WFBrown,Jr,ChiefTechnical Editor,MechanicalPropertiesDatacenter,EelfourStulen,Inc,TraverseCity, Michigan Milita~StendatilzationHandbook,“MetallicMaterialsmfdElementsforAerospace VehicleStructssrea”,MlLHDBK5B,1September1971,availablefromtheSuper intendentofDocuments,GovernmentPrintingOffice,PO80X1533,Washington, DC20013 Schwartzberg,FRetal,“CryogenicMaterialsHandbook”,AFMLTDR64280, August,1964, 102Downloaded from http://wwweveryspeccom , MILHDBK697A 1JUNE1974 TitaniumAlloysHandbook,MCICHB02,December,1972,MetalsandCeramics InfomsationCenter,Battelle’sColumbusLaboratories,Columbus,Ohio DistributedbyNationalTechnicalInforrnationservice,USDepLofcommerce, Springfield,Virginia(AD758335) “MaterialsSeIr+ctor73”,MaterialsEngineering,~(4),MidSeptember,1972,Pfs 173175 “DataBook”,MetaiProgress,~(1),MidJune,1973,PP8667 TheScience,TechnoloqvandApplicationofTitanium,ProceedingsofanInter nationalConferenceorganizedbytheInStiNteofMetals,TheMetallurgicalSociety ofAlME,andAmericanSocietyforMetals,inaawciationwiththeJapanInstitute ofMetalsandtheAcademyofSciences,USSR:PergamonPress,NY,1970 TitaniumScienceandTechnoloW,4VolumesintheMetallurgicalSocietyofAlME ProceedingsoftheS6cond”lnternationalCsmferencdonTkmium,heldin Cambridge,Massachusats,May25,1972,PlenumPublishingCorporation,New York1973 1820MetallurgicalInformation Jaffee,Rl,“ThePhysicalMetallurgyofTitaniumAlloys”,PrograssinMetal Physics,~65163,PergamonPress,Oxford,”England(1968); M~illan,MK,andMcQuillan,AD;TitaniumJAcademicPressNewYork, NY1956 , Margolin,H,andNiels@t,JP:,,“TitaniumMetallurgy”,ModemMaterialscVolume 2,Academic,Pres,NaqIYork,NY,1960 I I Maykrs’ds,”D~J;Ogden,HR,andJaffee,R;I,“The”EffectsofAlloyingElements inTitanium?(VolumeA,Constitution),DMICRepo~138A(September15,1960), and(Volume8,Defo~onand Tra,dfomsationCharecterkikdDMICReport 1388(May15,1961),DefenseMatelsinformationCentei,8attelleMemorial 1nstitute,Columbus,Ohio Allen,MM,“’AdvarsceditaniumAlloyDiskProductionandEvaluation”,Unitad J Aircraftcorporation,Flo,ldaResearchandDevelopmentCenter,AFMLTR7178, February,19721 HallJAPierce,CM,Ruckle,DL,andSprague,RA,““PropertY MkrostNctureRelatiorrtitpsinTitaniumAiloy,T14A12Sn4Zr$Mo’”,Technical ReportAFMLTR71208,1971 DeSiato,TS,etal,“TheInfluence“ofSectionsii~ontfseMechanicalProperties andFractureToughnessof7075T6Aluminum,Ti43Al%V2Sn,andAISI4340 Steel”,AMRATR6405,February,1984 I Hickey,CF,Jr,“EffectofMicrostructureandCoolingRateontheMechanical PropertiesofTi6Al6V2Sn”,AMRATR6516,JuIv,1965 103Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 Gurney,FJ:,andMale,AT, “TheRelationshipofMicrostructureand MechanicalPropertiesofExtrudedTitaniumAlloyBarstothePriorDeformation HistoW”,AFMLTR7128,April,1971 Kessler,HD,andHansen,M,''TransformationKineti=andMmhaniml PropemiesofTitaniumAluminumMolybdenumAlloys”,TransASM,Volume46t p587,1964 81ackburn,MJ,andWilliams,JC,“PhaseTransfomsationinTLMoandTiV Alloys”,TransAlME,Volume242,p2461,December,1988 Williams,JC,Hickman,BS,andLeslie,DH,“TheEffectofTernaryAdditions ontheDecompositionofMetaatableBetaPhaseTitaniumAlloys”,MetTrans, Volume2,No2,p477,February1971 Coyne,JE,Heitman,GHM&lain,J,andSpaAs,R8“meEff~tOf8eta ForgingonSeveralTitaniumAlloys”,MetalsEngineeringQuarterly,@(3},P10 August1968 Heitman,GH,Coyne,JE,andGalipeau,RP,“TheEffectofAlpha+8etaand 8etaForgingontheFractureToughnessofSeveralHighStrengthTitaniumAlloys”, MetalsEngineeringQuarterly,~(3),P15,August,1968 Titanium~4VolumesintheMetallurgicalS@AetyofAlME Proceedings,R1JaffeeandHM8urte,Editors,TheproceedingsoftheSecond InternationalConferenceonTitanium,heldinCambridge,Massachusetts,May25, 1972,PlenumPublishingCorporation,NewYork,1973 2128HeatTreatmentProcesses MetalsHaridbookt8thEditionVolume2,HeatTreating,Cleaning,andFinishing, AmericanSocietyforMetals,MetalsPark,Ohio,1964 MlLH81200A,MilitarySpacification,HeatTreatmentofTitaniumandTitanium Alloys12September1966 HoldenFC,Og&s,HR,andJaffaa,RL,“HeatTreatmentandMechanical PropertiesofTiMoAlloys”JMetals,Volume8,p1388,October,1956 Seagle,SR,“EffectofCoolirigRataFromtheAnnealingTemperatureonthe TensilePropertiesofTF8AIlMolVSheat”,R~@iveMetalsMemorandum, Fetsttsaw19,1964 ,, : Fopiano,PJ,andHickey,CF,Jr“StrengtheningMechanismsDuringtheHeat TreatmentofmreaTitaniumAlloysl14A14V,Tt$Al*V2Sn,and Ti6AIlMoW”,AMMRCTR6813,AmiYMeterialsandMechanicsResearch Canter,Watertown,Massadsusett%June,1968” Fopiano,PJ,8ever,MB,andAverbach,8L,“PhaseTranaformatiOnsand StrengtheningMechanismsintheAlioyTF6AMV”,TransactionsoftheASM6Z, p324,1969 , 104Downloaded from http://wwweveryspeccom I MILHDBK697A 1JUNE1974 Swift,EH,Iannelli,AA,andRizzitano,FJ,“TheEffectofSolution TemperatureonMechanicalPropartiaeandMicrostructurasof6A16V2Sn TitaniumAlloy’f,AMRATR6S11,May,1965 Goraeki,TA,Pfanner,G,andTrepel,W6,“ProductionTechniquesfor Extruding,Drawing,andHaatTreatmentofTitaniumAlloys”,FairchildHiller Corporation,AFMLTR+8349,December,1966 Sajdak,RJ,Gei&dorfer,RF,Hall,JA,andPierce,CM,“HeatTreatment StudyofBetaExtrudedTitaniumAlloyTi%A16V2Sn”,AFMLTR7252,June, 1972 Hall,JA,andPierce,CM,“ImprovedPropeniasofTi6Al6V2SnThrough MicrostructureModification”,AFMLTR70312,February,1971 “6aaicDesignFactsAboutTitanium”,TechnicalDataSheet,RMICompany,Milaa, Ohio,1971 “’HowtoUseTitanium–PropertiesandFabricationofTitairiurnMillProducts”, TashnicalDataSheat,Titaniu!riMetalsCorporationofAm&ica,WestCaldwall, NJ,1970 Reynolds,JE,Ogden,HR,andJaffae,Rl, “AStudyoftlieAirContamination ofThraaTrtaniumAIIovs”,TransASM,43,Dasember,1956 Antony,KC,“AirContaminationinTitaniumAlloysTM79andTi&l1”, JMaterials,~(2),pp456477,1966 WWiams,DN,“HydrogeninTitaniumandTitaniumAIIovs”,TMLReportNo 100,DefenseMetalsInformationCanter,6attelleMemorialInstitute,Columbus, Ohio,May,1958 2934FormingProcaesas MetalsHandbook,8thEdition,Volume4,Forming,AmericanSocietyforMetals, MetalsPar\Ohio,1969 TiiniumAllotiHandbook,MCICHE02,December,1972,MetalsandCaramics InformationCenter,Battelle’sColumbusLabcyatwias,Columbus,Ohio OistributadbyNationalTechnicalInformationservice,USDeptofCommerce, Springfield,Virginia(AD758335), Altan,T,tloadgar,FW,atal,Forgin&FufldamentalsandPractices,VolumeI AnalvaisandEquiprqant:VolumeIIMaterialsandPractices,MCIC~B~,May, 1973,MetalsandCaramtcaInformationCanter,Battelle’sColumbusLaboratories, ColumbusOhio Fink,EJ,andHall,RF,“HowForgedToolStealDiesStopTitaniumSpring, back”TheIronAge,~(21),6971,November22,1962 105Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 Wood,WW:etal,“FinalReportonAdvancedTheoreticalFormability ManufacturingTechnology”,Volume1and11,LTVVoughtAeronauticsDivision, LingTemcoVought,Incorporated,Dallas,Texas,ContractAF33(657)10823,X January,1965 Killmorgen,LL,“HowtoBendTitaniumTubing”, TheToolandManufacturing Engineer,52(41,9092,April,1962 Newman,JS,andCaramanica,JS,“OptimumFomsingProcessesandEquipment NecessarytoProduceHighQuality,CloseToleranceTitaniumAlloyParts”, GrummanAircraftEngineeringCorporation,FinalReportAFMLTR68257, ContractAF33(615)5063,September,1968 3539Mach~ningProcesses MetalsHandbopk,8thEdition,Volume3,Machining,AmericanSocietyforMetals, MetalsPark,Ohio,1967 MachiningDataHandbook,2ndEdition,compiledbytheTechnicalStaffofthe MachhsabilityDateCenterMatcutResearchAssociates,Inc,Cincinnati,Ohio,1972 Mathewcm,C,andJanz,FA,“TipsonMachiningTitanium”,American MachinisUMetalworkingManufacturing,105(14),8384,July,1961 ColtonRM,“ExperimentalandProductionMachiningofTitaniumAlloys”, ASTMEPap@rNo”SP53191presentedatthe19621963CreativeManufacturing SeminaroftheAmericanSc&atyofToolandManufacturingEngineers,Detroit, Michigan Seward,WK,“ContactWheelsforAbrasiveBelts”,AmericanMachiniW MetalwurkhsgManufacturing,~(9),63*5,April29,1963;137139,May13, 1963 Fiald,M,Zlatin,N,andJamason,RT,“MachiningDWictsltMaterials TmiumAlloys”MetalProgress,~(2),8489:FebnsaW;1965 “MachiningofTitaniumAlloys”,DMICMemorandumNo199,DefenseMetals Informationtinter,BattelleMemorialInstitute,Columbus,Ohio;Febmary2,1855 Movich,RichardC,“ElactrochsssIkslMachbtin9TitaniumAIIoYwaffleGrid Plates”,PaparNoMR67522,ASTMESaminar,,Febnsa~,1887 GurklkJA,“EffactaofECMRonMechanicalPropertiesofMatal”,ASTME paperEM4W188,1886 Deutsdt,HartrvM,“MaakatttsforChemlckl&lillingY,MaterialsinDesignEngineer ing,128130,241,May,1861 Hill,DH,“ElactricDischargeMachining”,ASMMetalsEngineeringQuarterly, 2227,Augum,1962 106Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 1 4051JoiningTechnology TitaniumAlloys,Hafsdbook,MCICHB02,December,1972,MetalsandGeramics InformationCenter,Battelle’sColumbusLaboratories,Columbus,Ohio ~Dktribute6byNationalTechnicalInformationService,USDeptofCommerce, Springfield,Virginia(AD756335) ~Spark,LE,“TheStrengthToughnessPropertiesofWeldsinPlatesofCommercial TitaniumAlloys”,WeldingJournal,~(2),53s70s,February,1971 I ~’Vikham,VB,andMikhaylovAS,“EffectofCarbonontheMechanical PropertiesofTitaniumBeteAlloyWeldJoints”,Re@m7JPRS–55393,Joint publicationsResearchService,Arlington,Virginia,March9,1972 Adler,PN,Kennedyj1,andSatkiewicz,FG,“LocalizedHydrogeninTitanium Welds”,WeldingJournal,~[4),180s186s,April,1973‘ Sullivan,TL,“BehaviorofTi5Al25SnELITitaniumAlloySheetParentand WeldMetalinthePresenceofCracksat20K,ReportNASATND6644,NASA LewisResearchCenter,Clweland,Ohio,November,1971 Aahton,JH,andWolanski,ZR“SurfaceEmbrittlementof6AI4VTitanium IDuringDiffusions’Bonding”,Metallography,~(4),359363,August,1972 Nessler,C GRua,DA,andEng,RD,“Friction“WeldingofTitaniumAlloys”, WeldingJournal,~(9),379s–365s,September,1971 Schwenk,W,Kaehler,WA,andKennedy,JR,“WeldabilityofTitaniumAlloy Sheets‘6Al@&2Snand8A1lM&lV’”,WeldingJournal,&(2)64s73s,1867 Stark,JE,etal,“WeldingoflinchThickT*A14VPlate’”,WeldingJournal, q(9),605814,1962“ Roth,RE,andBratkwich,NF,”’’CharacteristicsandStrengthDataofElectron BeamWeldsinFwrRepresentativeMaterials”,WeldingJwmal,~(5),228s 240s,1962 Nippea,EF,andSavage,WF,“Rea~dualStresAinWeldedTitaniumPlates”, TheWeldingJoumal,~(10),433s439s,1958 Nolen,RK,etal,“SpotWeldingofTi~A14V”,TheWeldingJournal,~(4), 129s136s,April,1956 MlLW+856C,‘Welding,Risietence:Aluminum,Magnesium,NonHardening SteelsorAlloys,NickelAlloys,HeetResistingAlloys,andTitanium,Spot,and Seam” , Weigert,KM,“HighStrengthTitaniumBondingbyTorchHeating”,Welding JwmalResearchSupplement,~(2),64BBs,Febmary,1962 107Downloaded from http://wwweveryspeccom IMILHDBK697A 1JUNE1974 Monroe,RE:,andMortland,JE,“JoiningofTitanium”,DMICReport240, DefenseMetalsInformationCenter,BattelleMemorialInstitute,Columbus,Ohio, November25,1967 Bertosa,RC,andHikido,T,“BrazingandDiffusionBondingofTitaniumAlloys toSimilarandDissimilarMaterials”,SAEPaperNo650752,presentadatSociety ofAutomotiveEngineemMeeting,LosAngeles,California,October48,1965 Evans,RM,“’BrazingTitanium”,DMICTechnicalNote,DefenseMetalsInforms tionCenter,BattelleMemorialInstitute,Columbus,Ohio,October26,1965 Reynolds,BL, “LowTemperatureBrazingofTitaniumSandwichStructures”, MetalsEngineeringCluarcerly,~(3),45–50,August,1970 Rylnikov,VSandGubin,Al,“BrazingTitaniumwithSilverAlloys”,Welding Production,~(1),53–56,Januaw,1970 Hause,C1,” StructuralAdhesivaa–SomeTypesDesignedforMetaltoMetal Bon~ng”,WeldingEngineer,~(9),4043September,1954 Fields,D,“’ManufacturingMethodsDevelopmentofSpotWeldAdhesiveBonded JoiningforTitanium”,FinalReportAFMLTR7193,LockheedGeorgiaCompany, Marietta,Ga,ContractF3361571C1099,June,1971 Dill,HD,and“Rich,DL,“DiffusionBondedTkeniumStructures”,FinalRepors AFFDLTR7151,McDonnellAircraftCompany,StLouis,Me,Contract F3361570C1121,June,1971: Wu,KC,“ReaistenceNORTiBONDJoiningofT@niumShapes”,Aircraft Division,NorthropCorporation,Hawthorne,Calif,paperpresentedatthe52nd AnnualMeetingoftheAmericanWeldingSocietyrSanFrancisco,Calif,April2729, 1971 Fraa&nan,AH,“BasicPropertiesofThinFilmDiffusionBrazedJointain Ti~A14V’”,AircraftDivision,NorthropCorporation,paperpresentedattie62nd AnnualMeetingoftheAmericanWeldingsociety,SanFrancisco,California, April27291971 Tucker,MS,andWilson,KR,“AttackofTMA14VbySilverBaseBrazing Alloy%,WeldingJournal,~(12),521526,December,1969 NationalAarospawS@ndard,NAS621,Featenars,T@iumAlloy,Procurement Specification,Revision6,JanuaW30,1971,Aar&pacaIndustriesAssociationof ,Ameria,1725DaSelesStreet(NW)Wasfsington,,DC20036 Stenhope,A,etal,“weldingAirfnsmeStructuresinlltaniumUsingTensile LoadingtoOvercomeDistortion”,MatelConatti”donandBritishWeldingJournal ~(19),366372,October,1972 I I 106Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 HoIco,KH,“HotPressandRollWeldingofTitanium6peuntAluminum 4PercentVanadiumBarandSheetWithAut@VacuumCleaning”,ReportNASA TND6958,NASA,LewisResearchCenter,Cleveland,Ohio,September,1972 Schwarta,”MM,”LaserWeldingandCutting”,Bulletin167,WeldingResearch Council,NewYork,November,1971 Locke,E,etal,“DeepPenetrationWeldingWithHighPowerC02Lasers”, WeldingJournal,~(5),245s249s,May,1972 5255Coatin@andSurfaceTreatment Koehl,BG,andMaykuth,DJ,“OxidationResistantCoatingsforTitanium”, DMICTechnicalNote,January1,1966,DefenseMetalsInformationCenter, BattelleMemorialInstitute,Columbus,Ohio Covington,LC,andEarly,FR,“MethodsofProtectingTitaniumAgainstHot SaltCorrosion”,SpecialSummaryRepoRonProject4742,TitaniumMetals CorpomtionofAmerica,WCeldwell,NewJersey,Augu%1964 Hansel,RW,“SurfaceHardeningProcessesforTitaniumandItsAlloys”,Metals progress,~,P90,March,1954 Mitchell,EandBrotherton,P”J,“SurfaceTreatmentsforImprovingtheWear ReaiatanceandFrictionPropetiieaofTttaniumandltsAlloys”,JhtMet,93, p361,19651965 Weltzin,ROandKoves,G,“SurfaceTreatmentofTi6A14/forImpactFatigue and WearF@ktenca”, SymposiumonApplicationsRelatedPhenomenainTitanium *ASTM STP 432,p263,1966 Hirsch,RA,“LightweightGearboxDwelopmentforPropellerGearboxSystem ApplicetionaPotentialCoatingsforTitaniumAlloyGears”,ReportAFAPLTR 7290(AD753417),GeneralMotoraCorporation,DetroitDieselAllisonDivision, Indianapolis,Indiana,ContractF3361570C13B3,Dacember,1972 McAnelly,Ill,WJ,“ErosionReaiateqtCoatingforTitanium”,FinalReport ~MRCCTR736,UnitedAircraftCtwpor%tion,Florida’Reaea~andDevelopment Cerrtar,WestPalmBeach,Florida,contractDAAG4&71C0173,Janua~,19?3 Wood,WG,“WeerResistantNitrideSurfaceforTitaniumandSteel”,Kolene CorporationDetroitMichigan,paperpresentedattheWeatsrcConferew,Los Angel=California,March1216,1973~‘ wya~JL,andGran&NJ,“NitridingT!ImprovesProperties”,IronAge@, p124, June26,1954 , Cuthill,JR,Haye!i,WD,andSeybold,RE,“NitridingPhenomenainTiandthe TAA14VAlloy,”JofRea,NatBurStd,~(1),p119,1964 109Downloaded from http://wwweveryspeccom MILHDBK’697A 1JUNE1974 Takamura,A;“SurfaceHardeningofTitaniumbyOxygen”,TransJapaneseInst ofMet,~(1),p10,January,1962 s Pochily,TM,“ProcessforAnodizingTitanium”,TechnicalReportWVT6605, BenetLaboratories,USArmyWeaponsCommand,WatervlietArsenal,Watervliet, NewYork,April,1966 Janssan,J,Luck,J,andTorborg,R,“ReflectanceofAnodizedTitaniumand Beryllium”,ElectrochemTech,~p368,1963 deLeat,FGA,TRWSystemsGroup,Redondo8each,California,andAdams, TR,TiodizeCompany,Inc,Burbank,California,“InhibitingtheWearand GallingCharacteristicsofTitanium”,paperprewntedattheWestecConference, LosAngeles,California,March1114,1968 Rabinowicz,E;:“LubricantsforTimnium”,Metalprogre~,Z(5),112,May,1955 Adams,TFL, “LubricantsthatPreventGallingofThreadedandMechanical Fastenera”,TiodizeCompany,Inc,Burtsank,California,paperpresentedatthe4tfr NationalSAMPET@chnicelConferencePaloAlto,California,October1719,1972 Richaud,M,“PlatingonTitanium”,ElectroplatingandMetalFinishing,~(9), September,1956, PP 30331O;andinMetalFinishing,&(9),December14,1956, pp496497 Wood,RA,“’SurfaceTreatmentofTitanium”,OMICTechnicalNote,March15, 1965,DefenseMetalsInformationCenter,8attelleMemorialInstitute,Columbus, Ohio , “AircraftFastenersAluminumPlated”,Ametek,Inc,Paoli,Pennsylvania,Metel Progressw(3},76,September,1972 Shapiro,AS,andGisser,H,“LhbricetionofTitaniumSurfacesMcdifiedby MetallicOiffusion,ASLEPreprint62LC13,LgbricetionConference,October1618, 1962 Levy,M,andLevittAP, “FlameSprayedMetallicandCeramicCoatingsfor AmyApplications”, AMRAMS6401, US Army MaterialsResearchAgency, Watertown,Masssschusetta,May1884 Levy,M,Sklover,GN,and,Sellera,DJ “Adh&onandThermalPropertiesof RefractoryCoatingMetalSubstrataSystems”,AMRATR8801,Ushny MaterialsResearthAgency,Watertown,MassecfI&atta,JanuaW,1966 8eles,TTManning,CR,Jr,andLiaeger;WB,“Equ/pmentandPrucadureafor GlassBeadPeeningTiinium AlloyTanks”,Nl$iATN0+?66, LengleyR6aaarch Center,Hampton,Virginia,January,1966 110Downloaded from http://wwweveryspeccom MILHDBK697A 1JUNE1974 Koster,WP,Field,N,aridFritz,LJ,“SurfaceIntegrityofMachined StructuralComponents”,ReportAFMLTR7011,FinalReportonContract F3361568C1003, MetcutResearchAssociates,Inc,Cincinnati,Ohio,March, 1970 Greenfield,1T,andSnyder,DM,“TheEffectofaThinDiffusedSoluteLayer ontheNucleationofFatigueCracks”,ReportAFOSRTR730123(AD755385), UniversityofDelaware,Newark,Delaware,ContractAFOSR711094,December, 1972 Bettis,RK,‘WearResistantCoatingsforTitaniumAlloys:FrettingFatigueof UryxsatedTL8A14V”,FrnalRepomAFMLTR71212,GeneralElectricCompany, AircraftEngineGroup,Cincinnati,Ohio,ContractF3361570C1537,November, 1971 Kramer,1R,andKurnar,A,“StudyoftheInfluenceofSolidFilmsontheCreep 8ehaviorofMetals”,FinalReport,MartinMarietta,DenverDivision,Denver, Colorado,ContractNOO01989C0122,September,1969 Kramer1R,andKumar,A,“StudyoftheEffectsofDiffusedLayersonthe FatigueStrengthofCommercialTitaniumAlloys”,TechnicalReportAFMLTR 70185;MartinMariettaCorporation,ContractF3361589C1573,September, 1970 Williams,DN,andWood,RA,“EffectsofSurfaceConditionondieMechanical PropertiesofTitaniumand(ssAlloys”,MCIC714M;August,1971,Metalsand CeramicsInforrnationCenter,Battelle’sColumbusLaboratories,Columbus,Ohio, (AD732248) 5680CorrosionCharacteristics Jackson,JD,andBoyd,WK,“CorrosionofTitanium”,DMICMemorandum 218,September1,1988,DefenseMetalsInformationCenter,BattelleMemorial Institute,Columbus,Ohio Fink,FW,andBoyd,WK,“TheCixrosionofMetalsInMarineEnvironments”, DMICReport245,May,1970,DefenSeMetalsInformationCenter,Columbus,Ohio Brown,BF,“TheApplicationofFra”mreMechanismsinTitaiiiumAlloys”,An InternationalSymposiumatGeorgiaInstituteofTechnology,JanuaW2729,1971 CosponsoredbyTheNationalAssociationofCotiosionEngineem Judy,RW,Jr,andGoode,RJ,“StressCorrosionCrackingC,@’acteriaticaof AlloysofTitaniumInSaltWater”,NRLReport6564,July21,1967 Crooker,TW,Judy,RW,Jr,andcooley,LK,“SubcriticalCrackGrowthIn severalTkaniumAlloys’~,NavalResearchlaboratory,Washington,DC,NRL MemomndumReport2160,8ePternbar,”’19713 Fager,DN,andSpurr,WF,“SomeCharacteristicsofAqueousStressCorrosion inTitaniumAlloys”,ASMTransQuart,fl(2)June,1968 111Downloaded from http://wwweveryspeccom MILHDBK697A I 1JUNE1974 Piper,DE,Smith,SH,andCarter,RV, “CorrosionFatigueand StressCorrosion CrackinginAqueousEnvironments”,MetalsEngQuart~(3),p50,August,1968 Sanderson,G,andScully,JC,“StressCorrosionofTitaniumAlloysInMethanblic Solution”,CorrosionScience,~(7)541546,July,1968 Boyd,JD,etal,“TheEffectofCompositionontheMechanismofStress CorrosionCrackingofTitaniumAlloysinN204andAqueousandHotSaltEnviron mersts”,NASACR1525,Februa~,1970 8oyd,JD,etal, “TheEffectofCompositionontheMechanismofStressCorrosion CrackingofTitaniumAlloysinN204andAqueousandHotSaltEnvironments, NASACR1846,October,1971 Gray,H’R““ RelativeSusceptibilityofTitaniumAlloystoHotSaltStress Corrosion”,NASATND6498,November,1971 Mahoney,MW,andPaton,NE,“TheEffectofOxideThicknessonTheHotSalt StressCorrosionSusceptibilityofTi6Al4V”,Corrosion,28,(10),p374,October, 1972 mite,EL,andWard,JJ,“IgnitionofMetalsinOxygen”,”DMICReport224, DefenseMetalsInformationCenter,BattelleMemorialInstitute,Columbus,Ohio, Februa~1,1966 Fager,DN,andSpurr,WF,“SolidCadmiumEmbrittlementinTitaniumAlloys”, CorrosionNACE,~(10),P409,1970 Custodians:” ArmyMR NavyAS AirForce84 ReviewActivities:P;epariigactivity: ArmyMR , ProjectNo95GP0046 ArmyMR,,EL,Ml,ES,Mu,WC,GL NavyAS AirForce84 DSAIS UserActivity: NavyOS 112Downloaded from http://wwweveryspeccom s FOLO POSTAQEANDFCSSPAID Q* 5!&!m oFFICIALBUSINESS PEAL7VFORPRIvATEUSEslm ~ Director ArmyMsterials6Mechanics ResearchCenter ATTN: AMMIRus Watertovn,MA02172 FOLD Downloaded from http://wwweveryspeccom \ STANDARDIZATIONDOCUMENTIMPROVEMENTPROPOSAL IOt!QApww1 No,22R255 {STRUCTION5lleprpc( thisformis1Olici;beneficialcommentswhichwillhelpachieveProcure mentO(sitbleproductstreasoblecostandminimumdelayorwillotherwiseenhanceuseofthedocument aDcowctorsgovemmetctivities,mafclurersledrswhprospectivesuppliersoftheproduct reinvitedtosubmitcommentsto(hegvmrnen(Foldlines,CVCCSsidestpleincomet,andsendt repri~ lctivityCommentssubmittedOthisformdmotconstituteorimplyathriztic1wivcny ortiooftherferencddocument(s)ortomedotrac!alrequirementsAttachanypertinentd(which laybduseinimprovingthisdocument11thereredtiitioalpaper, lttachtokmandPIbothi nelpeddrssedtopreprigactivity CUMENTIDENTIFIERANDTITLE MEOFORGANIZATION ANO AOORESS CONTRACTNUMOER MATERIALPROCUREO”NDERA oo,”=cTcOvmNw=NTcO*TacT =SU=NTRAC1 HASAN” PART OFT“EDOCUMENT CR I?A7E0PROL3LE14SOR REW, REO ,NTERPRE7T,ON, NPROC” RE!IENT USEI G,” HRAP” N“MEwO WO O,NG COMMENTS12NANYDOCUMENTREC+11REMEN7C0NS10ERE07C9RI08D, ISTHEDoCUMENT RE9TR,CT,VE1 o,=* o No C21r”,t”+ts,?) I OATC Ill ,W,21426 , *“sO”EWW”T88,,,,,,,76,*20/17 Downloaded from http://wwweveryspeccom

------------- Read More -------------

Download military-handbook-titanium-and-titanium-alloys.pdf

military handbook titanium and titanium alloys related documents

Habiting Space and the Representational Limits of Latour's Semiotics of Assemblies.

18 Pages · 2002 · 1.06 MB · English

mantles 81 underclothing. On the top of . The favourite type of Australian house is laid out in an oblong block bisected by Furthermore, items such as the hair trunk map Elliott's present life in Australia to the one he . reading with the semantic exhaustion of a given place: 'The reading of space

Data Structures and Encoding

128 Pages · 2014 · 3.37 MB · English

The Unicode documents provide extensive documentation on these issues. 4. The GBK character set is an extension of the GB 2312-1980 character set and supports the Chinese characters in GB. 13000.1-93 that is the Chinese adaptation of Unicode 1.1. The GBK is code point backward compatible to 

User-Friendly Ontology Editing and Visualization Tools: The

6 Pages · 2009 · 588 KB · English

User-friendly ontology editing and visualization tools: the OWLeasyViz approach Nadia Catenazzi, Lorenzo Sommaruga, Riccardo Mazza Semantic and Multimedia Systems Lab

Performative regional (dis)integration: transnational markets, mobile commodities, and bordered ...

23 Pages · 2011 · 1.92 MB · English

one single agrocommodity, the tomato, and two border regions (Morocco ^ EU themselves from criticism, blaming unwelcome external infringements 

Chef Solus and the Explorers Introduce The Food Groups

1 Pages · 2009 · 970 KB · English

Chef Solus and the Explorers Introduce The Food Groups Visit www.ChefSolus.com for printable worksheets for kids, nutrition education games, puzzles, activities and more!

Proteomics and Protein Analyses of Ovine and Caprine Body Fluids

11 Pages · 2014 · 890 KB · English

1Department of Veterinary Public Health, Faculty of Veterinary Medicine, Agricultural University of Tirana, Albania; Although the proteomes of body fluids have been described in detail for some animal species, there are few equivalent . by the identification and application of specific protein bio

Food Groups and How They Help Our Body

1 Pages · 2010 · 296 KB · English

Food Groups and How They Help Our Body Food Group How it helps the Body Grains: Breads, cereals, rice, and pasta Go Foods Provides energy For movement,

Amylase, Pancreatic, Serum - Allina Health: Health care and

1 Pages · 2007 · 14 KB · English

Amylase, Pancreatic, Serum Clinical Information: Amylases are a group of hydrolases that degrade complex carbohydrates into fragments. Amylase is produced by the

Food Guide Pyramid, Nutrients, and Portion Sizes

24 Pages · 2009 · 347 KB · English

Food Guide Pyramid Groups Grain Group Nutrients and their benefits cont’d Several B vitamins (thiamin, riboflavin, niacin, and folate): - Play a key role in metabolism

Conflicts of Interest and Mutual Fund Performance

48 Pages · 2008 · 302 KB · English

benchmarks and non-client holdings, consistent with the long-run . client holdings of affiliated funds underperform the Daniel, Grinblatt, Titman, and banks use affiliated funds as a “dumping ground” for cold IPOs or allocate hot